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Abstract 

While it is well established that motivational factors such as earning more money for 
performing well improve motor performance, how the motor system implements this 
improvement remains unclear. For instance, feedback-based control, which uses sensory 
feedback from the body to correct for errors in movement, improves with greater reward. But 
feedback control encompasses many feedback loops with diverse characteristics such as the 
brain regions involved and their response time. Which specific loops drive these performance 
improvements with reward is unknown, even though their diversity makes it unlikely that they 
are contributing uniformly. This lack of mechanistic insight leads to practical limitations in 
applications using reward, such as clinical rehabilitation, athletic coaching, and brain-inspired 
robotics. We systematically tested the effect of reward on the latency (how long for a 
corrective response to arise?) and gain (how large is the corrective response?) of eight distinct 
sensorimotor feedback loops in humans. Only the feedback responses known to rely on 
prefrontal associative cortices showed sensitivity to reward, while feedback responses that 
relied mainly on premotor and sensorimotor cortex did not show sensitivity to reward. Our 
results may have implications regarding feedback control performance in pathologies showing a 
cognitive decline, or on athletic coaching. For instance, coaching methodologies that rely on 
reinforcement or “reward shaping” may need to specifically target aspects of movement that 
rely on reward-sensitive feedback responses. 

 

Introduction 
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If a cat pushes your hand whilst you are pouring a glass of water, a corrective response will 
occur that acts to minimise water spillage. This simple action is an example of a behavioural 
response triggered by sensing a relevant change in the environment—here, a push that 
perturbs the movement of your arm away from the intended movement path. This form of 
feedback control requires the brain to integrate sensory information from the periphery of the 
body, and thus suffers from transmission delays inherent in the nervous system. There is 
evidence that when more is at stake, we react faster to respond to demands of the task (Reddi 
and Carpenter, 2000). For instance, if wine was being poured instead of water and your 
favourite, white tablecloth covers the table, you may be faster at correcting for a perturbation 
that risks spilling your wine and staining the tablecloth. 

In the context of human motor control, feedback-based control is not a monolithic process 
(Reschechtko and Pruszynski, 2020; Scott, 2016). Rather, the term encompasses a series of 
sensorimotor feedback loops that rely on different sensory information, are constrained by 
different transmission delays (Figure 1a), and are supported by different neural substrates 
(Figure 1b; Reschechtko and Pruszynski, 2020). The circuitry underlying the short-latency 
stretch reflex is entirely contained in the spinal cord (Sherrington, 1906, 1913). The long-latency 
reflex relies on supraspinal regions such as the primary motor and primary sensory cortices 
(Pruszynski et al., 2011a), and is modulated by upstream associative cortical regions (Figure 1b; 
Beckley et al., 1991; de Graaf et al., 2009; Omrani et al., 2016; Scott, 2012; Zonnino et al., 
2021). Visuomotor feedback responses rely on visual cortex and other cortical and subcortical 
brain regions (Day and Brown, 2001; Desmurget et al., 2004). Due to these differences, each 
feedback loop is governed by different objectives such as maintenance of a limb position or 
reaching toward a goal (Figure 1a). Therefore, to address whether sensorimotor feedback is 
sensitive to motivational factors requires testing multiple distinct feedback responses. In this 
work, we employ rewarding outcomes (specifically, monetary reward) as a means to 
manipulate motivation (Codol et al., 2020a; Galea et al., 2015; Goodman et al., 2014; Hübner 
and Schlösser, 2010; McDougle et al., 2021). 

Recent work has demonstrated that rewarding outcomes improve motor performance in many 
ways. Reward results in changes to the speed-accuracy trade-off, a hallmark of skilled 
performance (Codol et al., 2020a, 2020b; Manohar et al., 2015, 2019). It can lead to a reduction 
in noise in the central nervous system and at the effector to improve the control of movement 
(Codol et al., 2020a; Goard and Dan, 2009; Manohar et al., 2015; Pinto et al., 2013). But 
whether reward modulates sensorimotor feedback control specifically remains scarcely tested, 
although previous work in saccadic eye movements (Manohar et al., 2019) and indirect 
evidence in reaching (Codol et al., 2020a) suggests this may be the case. More recent studies 
outline a general sensitivity of feedback control to reward during reaching but does not 
differentiate between each distinct feedback loop that the nervous system relies on to 
implement this control (Carroll et al., 2019; De Comité et al., 2021; Poscente et al., 2021). 
However, the information to which each loop is tuned greatly varies (Reschechtko and 
Pruszynski, 2020; Scott, 2016), and consequently it is unlikely that they are all uniformly 
impacted by reward.  
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Figure 1: Sensorimotor feedback loops involved in motor control. (a) Feedback loops can be 
classified along three dimensions: the sensory modality on which they rely (vertical axis), the 
post-perturbation latency of their response (horizontal axis), and the function they perform 
(color-coded). Figure adapted from (Scott, 2016). Note that latencies indicated here reflect the 
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fastest reported values from the literature and not necessarily what was observed in this study. 
(b) Each feedback response relies on different anatomical substrates, which form a nested 
network able to integrate information to produce movement. 

 

Systematically assessing each individual feedback loop’s sensitivity to reward would provide a 
mechanistic, rather than descriptive, understanding of this relationship. Additionally, it would 
further complete the picture of how rewarding information improves motor performance 
(Figure 1b), a point of focus in the past decade due to applications in clinical rehabilitation 
(Goodman et al., 2014; Quattrocchi et al., 2017), sports coaching (Cashaback et al., 2019; Galea 
et al., 2015; Manley et al., 2014; Parvin et al., 2018), or studies on motor pathologies (Izawa and 
Shadmehr, 2011; Manohar et al., 2015, 2019; Pekny et al., 2015; Therrien et al., 2016, 2018). 
Teasing apart which feedback loops are modulated by reward can also provide a window into 
the neural substrate of reward processing during the production of movement, since they rely 
on different brain regions (Omrani et al., 2016; Reschechtko and Pruszynski, 2020). 

Therefore, in the present study we tested how eight distinct sensorimotor feedback responses 
are modulated by reward. We measured feedback latency (how long does it take for a 
corrective response to arise?) and feedback gain (how large is the corrective response?) for 
each feedback response within rewarded and unrewarded conditions. Motivational factors can 
take different forms, such as rewarding or punishing outcomes (Chen et al., 2017, 2018a, 
2018b; Codol et al., 2020a; Galea et al., 2015; Guitart-Masip et al., 2014), inhibition versus 
mouvement (Chen et al., 2018a; Guitart-Masip et al., 2014), contingency (Manohar et al., 2017), 
expectation (Lowet et al., 2020; Schultz et al., 1997), urgency (Poscente et al., 2021), or agency 
(Parvin et al., 2018). In this study we focused on contingent rewarding outcomes, where 
participants have agency over the returns they obtain, and with an expectation component 
since potential for returns is indicated at the start of each trial (see Results and Methods). 

 

Results 

We first assessed feedback gain and latency for the short- and long-latency stretch reflex (SLR 
and LLR), which are the fastest feedback responses observed in human limb motor control. 
Participants were seated in front of a robotic device that supported their arm against gravity 
and allowed for movement in a horizontal plane. They positioned their index fingertip at a 
starting position while countering a +2 Nm background load (dashed arrows in Figure 2a, top 
panel) to activate the elbow and shoulder extensor muscles. We recorded electromyographic 
signals (EMG) using surface electrodes placed over brachioradialis, triceps lateralis, pectoralis 
major (clavicular head), posterior deltoid, and biceps brachii (short head). After participants 
held their hand in the starting position for 150-200 ms, a 10 cm target appeared at 20 degrees 
either inward (closer to the chest) or outward (away from the chest) with respect to the elbow 
joint. Next, a ±2 Nm torque perturbation was generated by the robot about the elbow and 
shoulder joints (solid arrows in Figure 2a-c). A positive or negative torque signifies an inward or 
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an outward perturbation from the starting position, respectively. Participants were instructed 
to move their fingertip into the target as soon as the perturbation occurred. 

 

 

Figure 2: results for the SLR and LLR contrasts. (a) top view schematic of the apparatus. 
Participants could be moved in a horizontal plane. Background forces were applied to pre-
activate the extensor muscles (dashed arrows) and a mechanical perturbation, either two 
positive or negative torques, was applied to elicit the SLR and LLR (solid arrows). The dashed 
circles indicate the two possible target positions. (b) top panel: contrast used to observe the SLR. 
The control and manipulation conditions were on the right and left, respectively. Background 
loads are not drawn here for clarity. middle panels: average triceps EMG signal from the SLR 
contrast, with the dashed and solid lines representing control and manipulation conditions, 
respectively; bottom panels: difference between the manipulation and control condition. The 
left panels show EMG at trial baseline (see methods). Green and purple lines indicate EMGs for 
rewarded and non-rewarded trials, respectively. Shaded areas indicate 95% CIs. (c) same as (b) 
but for the LLR contrast. (d) Difference in time spent in target between rewarded and non-
rewarded trials. A larger value indicates more time spent in the target for rewarded trials. (e) 
feedback gains following SLR and LLR response onset, expressed as a log-ratio of rewarded over 
non-rewarded feedback gain. R2 and R3 epochs were taken as the first 25 ms and the following 
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25 ms after each participant’s LLR latency, respectively. Larger values correspond to higher gain 
in rewarded trials compared to non-rewarded trials. (f) Difference in LLR feedback gain between 
reward and no-reward conditions for each participant, in the R2 and R3 epochs. (g) Example 
area under curve (AUC) to obtain response latency for one participant and for the SLR contrast. 
Green and purple lines indicate rewarded and non-rewarded trials, respectively. Thick lines 
indicate line-of-best-fit for a two-step regression (see methods). (h) left panel: absolute response 
latency after the perturbation for the SLR; right panel: difference between rewarded and non-
rewarded trials. (i) same as (h) but for the LLR. In all panels with a red filled dot and black error 
bars, the filled dot indicates the group mean and error bars indicate 95% CIs. 

 

This yielded a 2x2 factorial design, in which an inward or outward perturbation is associated 
with an inward or outward target. Different contrasts allowed us to assess the SLR and LLR 
within the same task (Figure 2b-c). For extensor muscles, the SLR arose in trials with an inward 
perturbation but not in trials with an outward perturbation, regardless of the target displayed 
(Figure 2b). Feedback latency and gain were assessed by measuring when the EMG signal 
diverges between those two conditions, and the magnitude of the EMG signal in the 25 ms time 
period following this divergence, respectively. Conversely, the LLR arose if the direction of the 
perturbation conflicted with the task goal. For example, a LLR was observed in extensor muscles 
when contrasting an inward perturbation with an outward target (LLR occurring) but not for an 
inward perturbation with an inward target (LLR not occurring, Figure 2c). 

Finally, we introduced monetary reward as a third factor in our task design to assess its impact 
on feedback responses. Rewarded and non-rewarded trials were indicated at the beginning of 
each trial by displaying “$$$” and “000” symbols, respectively, on the display screen in front of 
participants. These symbols were replaced by each trial’s actual monetary value once the target 
was reached (always 0 ¢, CAD, in the case of non-rewarded trials). For rewarded trials, the 
monetary gains were proportional to the time spent inside the end target, therefore promoting 
faster reaches (see methods) because trial duration was fixed. 

 

Reward altered feedback responses as early as 50 ms post-perturbation 

In all conditions with rewarded outcomes, behavioral performance, measured as time in target, 
improved compared to conditions without reward (SLR contrast: W=135, r=0.99, p=5.31e-4; LLR 
contrast: W=130, r=0.95, p=1.34e-3, Figure 2d). We quantified feedback gains as a log-ratio of 
integrals of EMG activity between rewarded and non-rewarded conditions (see Methods), 
meaning a positive number indicates an increase in feedback gain for the rewarded conditions. 
We observed no difference at baseline and in a 25 ms window after the onset of the SLR (W=74, 
r=0.54, p=0.75, Figure 2e), that is in the R1 window of the SLR (Pruszynski et al., 2008). Next, we 
assessed the time of divergence of each participants’ EMG activity between the reward and no-
reward conditions using a Receiver Operating Characteristic (ROC) signal discrimination method 
(Figure 2g). We performed this analysis on the rewarded and non-rewarded trials separately, 
yielding two latencies per participant. Latencies for the SLR in the non-rewarded conditions 
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were in the 25 ms range post-perturbation, and latencies in the rewarded conditions were in a 
similar range as well, with no significant difference observed (W=68.5, r=0.50, p=0.64, Figure 
2h). Therefore, rewarding outcomes affected neither feedback latency nor feedback gains of 
the SLR. 

Turning to the LLR feedback response, we observed that feedback gains were greater in the 
rewarded condition in a 25 ms window following LLR onset, which corresponds to the R2 epoch 
(W=114, r=0.84, p=0.017, Figure 2e). We also assessed feedback gains in the R3 epoch, which is 
the 25 ms window following the R2 epoch, because slower processes that contribute to the LLR 
also occur in that timeframe (Lee and Tatton, 1975; Pruszynski et al., 2011b; Tatton et al., 
1975). In the R3 epoch, we also observed an effect of reward on feedback gains (W=136, r=1, 
p=4.37e-4, Figure 2e). To test whether the effect of reward is different in the R2 and R3 epoch, 
we assessed the interaction between reward and epoch in a repeated-measure analysis of 
variance (rm-ANOVA). For this analysis, we did not use a log-ratio, because EMG activity was 
not similar in R2 and R3 epochs (Figure 2c), and that difference would lead to a mismatched 
ratio normalisation across epoch, hindering comparisons over epochs. The rm-ANOVA revealed 
a small but reliable interaction, indicating that reward increased feedback gains more in the R3 
epoch than it did in the R2 epoch (Figure 2f). Finally, ROC analysis showed that LLR latencies 
were similar in the rewarded condition compared to the non-rewarded condition (W=102.5, 
r=0.75, p=0.074, Figure 2i). 

In summary, while the prospect of reward did not alter the SLR, it led to increases in feedback 
gains as early as the LLR, that is, about 50 ms post-perturbation, which is much earlier than the 
increase in latencies with reward reported in previous work (Carroll et al., 2019; De Comité et 
al., 2021). This increase in LLR gains with reward was stronger in the R3 epoch than in the R2 
epoch. 

 

Slower, goal-tracking feedback responses were unaltered by reward 

In addition to the SLR and LLR, slower feedback responses also exist that control for higher level 
aspects of movement, such as tracking the task goal. We tested the effect of reward on goal-
tracking feedback responses in two different settings. In a first “target switch” task, participants 
were instructed to adjust their movements to switch to a second target when a mechanical 
perturbation occurred during the movement (Figure 3a). In a second task, the switch to a 
second target (goal) was signalled by a visual jump of the target about halfway through the 
movement (Figure 3g). This allowed us to assess goal-tracking feedback responses relying on 
either proprioceptive or visual information, which are distinct and display their own 
characteristics. Notably, the proprioceptive feedback response displays faster latencies than the 
visual target jump response. Note that the target jump task was performed on an endpoint 
KINARM robot (Figure 4a, see methods). 
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Figure 3: results for the goal-sensitive feedback responses. (a) contrast used to observe the 
target switch response. The control and manipulation conditions were on the right and left, 
respectively. Background loads are not drawn here for clarity. The solid arrow indicates the 
mechanical perturbation. When two targets are displayed, the perturbation signals the need to 
switch to the second (top) target. (b) Difference in movement times (ΔMT) between rewarded 
and non-rewarded trials. A more negative value indicates shorter movement times for rewarded 
trials. (c) feedback gains following response onset, expressed as a log-ratio of rewarded over 
non-rewarded feedback gain. Larger values mean more gain in rewarded trials. (d) left panel: 
absolute response latency after the perturbation for the target switch response; right panel: 
difference between rewarded and non-rewarded trials. (e) top panels: average brachioradialis 
EMG signal, with the dashed and solid lines representing control and manipulation conditions, 
respectively; bottom panels: difference between the manipulation and control condition. The 
left panels show EMG at trial baseline (see methods). Green and purple lines indicate EMGs for 
rewarded and non-rewarded trials, respectively. Shaded areas indicate 95% CIs. (f) contrast used 
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to observe the target jump response. (g) difference in deviation from the desired movement 
time between rewarded and non-rewarded trials. A more negative value indicates movement 
times closer to the desired value for rewarded trials. (h-j) same as (c-e) for the target jump task. 
In all panels with a red filled dot and black error bars, the filled dot indicates the group mean 
and the error bars indicate 95% CIs. 

 

Participants were rewarded for short movement times and small deviations from desired 
movement time in the target switch and target jump task, respectively. Performance improved 
in the rewarding condition in both tasks (target switch: W=117, r=0.97, p=3.05e-4, Figure 3b; 
target jump: W=97, r=0.80, p=0.035, Figure 3h), but this was not due to an increase in feedback 
gains (target switch: W=82, r=0.68, p=0.23, Figure 3c; target jump: W=66, r=0.55, p=0.76, Figure 
3i) nor to a change in feedback latency (target switch: W=79.5, r=0.66, p=0.28, Figure 3d-e; 
target jump: W=72.5, r=0.60, p=0.49, Figure 3j-k).  

Therefore, our results indicate expectation of reward did not affect the response of feedback 
responses that adjust movements for task goals, regardless of which sensory modality it relies 
on (proprioceptive or visual). While superficially, this stands in contrast to the improvement in 
behavioural performance observed in these tasks, this merely suggests that other aspects of 
movement could have shown improvement, including other feedback responses that may not 
be apparent with the task contrast used here. 

 

Online visual control of limb position was also unaltered by reward 

Next, we assessed feedback response due to a cursor jump rather than a target jump. This 
feedback response is sensitive to position of the limb like the LLR, but it displays longer 
latencies (Dimitriou et al., 2013). The task design was identical to that of the target jump task, 
except that the cursor, rather than the target, visually jumped sideways (Figure 4a-c). Again, 
behavioural performance improved in the rewarded conditions, as measured by deviation from 
desired movement time (W=116, r=0.96, p=4.27e-4, Figure 4d), but feedback latencies and 
feedback gains were similar with or without reward (gains: W=79, r=0.66, p=0.29, Figure 4e; 
latencies: W=75.5, r=0.63, p=0.15, Figure 4f-g).  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.16.460659doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460659
http://creativecommons.org/licenses/by/4.0/


 

Figure 4: results for the cursor jump task. (a) top view schematic of the apparatus. (b) contrast 
used to observe the cursor jump response. The discontinuity in the trajectory (solid black line) 
indicates the cursor jump. (c) Example area under curve (AUC) to obtain response latency for 
one participant. Green and purple lines indicate rewarded and non-rewarded trials, respectively. 
The thick lines indicate line-of-best-fit for a two-step regression (see methods). (d) difference in 
deviation from the desired movement time between rewarded and non-rewarded trials. A more 
negative value indicates movement times closer to the desired value for rewarded trials. (e) 
feedback gains following response onset, expressed as a log-ratio of rewarded over non-
rewarded feedback gain. Larger values mean more gain in rewarded trials. (f) left panel: 
absolute response latency after the perturbation; right panel: difference between rewarded and 
non-rewarded trials. (g) top panels: average pectoralis EMG signal, with the dashed and solid 
lines representing control and manipulation conditions, respectively; bottom panels: difference 
between the manipulation and control condition. The left panels show EMG at trial baseline (see 
methods). Green and purple lines indicate EMGs for rewarded and non-rewarded trials, 
respectively. Shaded areas indicate 95% CIs. In all panels with a red filled dot and black error 
bars, the filled dot indicates the group mean and the error bars indicate 95% CIs. 

 

Reaction times improve with reward 

Reaction times have been measured in many different settings that include rewarding feedback 
(Douglas and Parry, 1983; Steverson et al., 2019; Stillings et al., 1968). The consensus is that 
reaction times are reduced when reward is available. However, previous work always 
considered reaction times triggered by non-proprioceptive cues, such as auditory (Douglas and 
Parry, 1983) or visual cues (Stillings et al., 1968). Here, we assessed participants’ reaction times 
triggered by a proprioceptive cue, which for arm movement tasks produce faster response 
latencies than visual cues (Pruszynski et al., 2008). 
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Figure 5: results for the reaction time tasks. (a) schematic of task design for proprioception-
cued reaction times. Participants were informed to initiate an elbow flexion by a small 
mechanical perturbation at the shoulder (black arrow). Background loads are not drawn here 
for clarity. (b) left panel: absolute response latency after the perturbation; right panel: 
difference between rewarded and non-rewarded trials. (c) feedback gains following response 
onset, expressed as a log-ratio of rewarded over non-rewarded feedback gain. Larger values 
mean more gain in rewarded trials. (d) top panels: average brachioradialis EMG signal, with the 
dashed and solid lines representing control and manipulation conditions, respectively; bottom 
panels: difference between the manipulation and control condition. The left panels show EMG 
at trial baseline (see methods). Green and purple lines indicate EMGs for rewarded and non-
rewarded trials, respectively. Shaded areas indicate 95% CIs. (e) schematic of task design for 
vision-cued task design. (f) left panel: absolute vision-cued reaction times; right panel: 
difference between rewarded and non-rewarded trials. The boxplot indicates the 5-25-50-75-95 
percentiles. In all panels with a red filled dot and error bars, the filled dot indicates the group 
mean and the error bars indicate 95% CIs. 

 

Participants held their arm so that the tip of the index finger was positioned at a starting 
location and the arm was stabilized against background loads that pre-loaded the forearm and 
upper arm flexor muscles (Figure 5a). A go cue was provided in the form of a very small 
extension perturbation at the shoulder, that led to less than 1 degree of shoulder or elbow 
rotation (Pruszynski et al., 2008). Participants were instructed to perform a fast elbow flexion 
toward a 10 cm target when they detected the go cue. Reaction times were defined based on 
brachioradialis EMG rising 5 standard deviations above baseline level (Pruszynski et al., 2008). 
In line with the literature on reaction times triggered by other sensory modalities, 
proprioception-triggered reaction times were greatly reduced under reward, reducing on 
average by 20.6 ms, from 170.8 to 150.2 ms (W=120, r=1, p=6.10e-5, Figure 5b). Feedback gains 
also increased significantly (W=118, r=0.98, p=1.83e-4, Figure 5c-d).  

Finally, we assessed reaction times in a choice reaction time task by re-analysing a dataset 
available online (Codol et al., 2020a). In this dataset, participants (N=60) reached to one of four 
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targets displayed in front of them in an arc centred on the starting position (Figure 5f). 
Participants could obtain monetary reward for initiating their movements quicker once the 
target appeared (reaction times) and for reaching faster to the target (movement times). In line 
with the current study, reaction times were shorter in the rewarded than in non-rewarded 
condition, from 400.8 to 390.2 ms on average (W=1241, r=0.67, p=0.016, Figure 5g). Of note, 
because EMG recordings were not available for the online dataset, only kinematic data were 
available, which explains the slower absolute reaction times than reported in other studies 
(Haith et al., 2015; Summerside et al., 2018). 

 

Discussion 

In this study we tested whether reward affected eight different kinds of sensorimotor feedback 
responses. Results indicate a heterogeneous sensitivity, both in terms of which feedback 
response and which characteristics of the response were modulated by reward (Figure 6). The 
earliest effect was observed during the R2 epoch of the LLR, that is about 50 ms post-
perturbation. This effect was constrained to the gain of the feedback response and did not 
extend to its latency. Following this, feedback responses slower than 110 ms were affected by 
reward (Figure 6a), with both an increase in gain and a reduction in response latency with 
reward. The SLR and two goal-tracking feedback responses (target switch and visual target 
jump) showed no modulation by reward.  

A feedback loop that we could not assess is the cortico-cerebellar feedback loop (Becker and 
Person, 2019; Chen-Harris et al., 2008; Manohar et al., 2019). This loop is the only feedback 
loop contributing to saccadic eye movements (Chen-Harris et al., 2008), which show 
performance improvements under reward as well (Manohar et al., 2015, 2019). 
Electrophysiological evidence in mice (Becker and Person, 2019) and non-invasive manipulation 
in humans (Miall et al., 2007) suggest this loop also contributes to reaching movement, but 
behavioural assessment remains challenging. 

While SLR circuitry is contained within the spinal cord, it does receive supraspinal modulation 
and displays functional sensitivity to higher-order task goals as well (Crone and Nielsen, 1994; 
Nielsen and Kagamihara, 1992, 1993; Weiler et al., 2019). Therefore, while unlikely, central 
modulation of SLR circuitry for rewarding outcomes could not be a priori ruled out. However, 
we observed no such modulation in the present experiments. 
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Figure 6: overview of rewarding feedback’s impact on sensorimotor feedback responses. (a) 
Reward can impact a feedback loop response by increasing feedback gains or reducing latency. 
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The colour code indicates function and is identical to the one in Figure 1a. (b) Reward exclusively 
affected feedback responses that rely on cortical associative areas or on the basal ganglia. 

 

Our results indicate that goal-tracking feedback responses are not affected by reward. This is 
surprising because task goal is often considered as a form of intrinsic reward (McDougle et al., 
2021). By extension, one may propose that extrinsic rewards like monetary return would 
increase the rewarding value of the task goal and make it more salient (McDougle et al., 2021). 
A key factor in our task is that no decision-making process takes place. Instead, even in the 
target switch task, once the perturbation occurs there is no choice to be made about whether 
to switch or not—the participant must switch to the second target to finish the trial. Recently, 
Carroll et al. (2019) showed that when a choice with different reward values is available, reward 
information can improve the likelihood and latency of a goal switch. The slower latencies at 
which this switch occurs (~160 ms) compared to what we observe in our target switch task (~90 
ms), and target and cursor jump tasks (~80-110 ms) is in line with the presence of an additional, 
decision-making component to the task in Carroll et al. (2019) because this decision-making 
component would add to the feedback loop’s processing time. Unfortunately, the alternative 
target task design used does not allow us to determine whether this reward modulation takes 
place in high-order associative cortices or from premotor and sensorimotor areas (Figure 6b). 
However, the absence of reward modulation we observed in the target jump task in our study 
would be consistent with a scheme in which reward modulation of the sort reported by Carroll 
et al. (2019) occurs in associative areas rather than sensorimotor or premotor areas. 

Our proprioception-cued and choice reaction time tasks, combined with previous published 
work, show that feedback responses slower than 110 ms are modulated by monetary reward. 
Additionally, the LLR was also modulated by reward. A distinction between reaction time loops 
and the LLR loop is that reward shortens latencies and increases feedback gains in the former 
and increases feedback gains alone in the latter. What causes these latencies in the first place? 
Regarding the LLR, latencies observed are mainly driven by transmission delays. 
Electrophysiological recordings show that proprioceptive information takes about 25 ms to 
reach the primary motor cortex, and a response travelling back downward would take an 
additional 25 ms, leading to ~50 ms latencies generally observed for this loop (Omrani et al., 
2016). Consequently, the LLR has no room for latency improvements beyond transmission 
delays. In contrast, reaction times are often the result of integration and accumulation of 
sensorimotor and cognitive evidence in associative cortices, the time course of which varies 
depending on urgency, utility, and value of information (Fernandez-Ruiz et al., 2011; Reddi and 
Carpenter, 2000; Steverson et al., 2019; Thorpe and Fabre-Thorpe, 2001; Wong et al., 2017). 

What is the basis of reward-driven gain increases within the short timescale of the LLR? 
Functionally, at least two distinct processes underlie the LLR (Lourenço et al., 2006; Matthews, 
2006). An earlier, spinal process exhibits “automatic” gain scaling similar to the SLR, and a 
slower, supraspinal process exhibits voluntary, but not automatic gain scaling (Kimura, 2006; 
Lourenço et al., 2006; Pruszynski et al., 2011b). The absence of reward modulation of the SLR in 
our results argues against a contribution of spinal processes to the observed reward 
modulation of the LLR and suggests instead that the increase in feedback gain during the LLR is 
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implemented by supraspinal processes. In line with this, we observed that the modulation of 
feedback gains by reward is larger in the R3 epoch, which is dominated by supra-spinal 
processes, compared to the R2 epoch, which is governed mainly (though not exclusively) by 
spinal mechanisms (Figure 2f). We propose that reward-driven increases in feedback gain are 
implemented by supraspinal processes, and the observed increase in R2 feedback gain 
represents the early build-up of that process (Pruszynski et al., 2011b).  

The supraspinal contribution to the LLR relies on many brain regions, and their temporal 
recruitment varies (Lee and Tatton, 1975; Omrani et al., 2016; Tatton et al., 1975). Specifically, 
the R2 epoch response relies mainly on the primary sensorimotor cortex (Matthews, 1991; 
Omrani et al., 2016; Pruszynski et al., 2011a), while additional regions such as the premotor and 
posterior parietal cortex (Omrani et al., 2016), supplementary motor area (Spieser et al., 2013), 
cerebellum (Kurtzer et al., 2013; Strick, 1983), reticular formation (Ravichandran et al., 2013; 
Shemmell et al., 2009) and red nucleus (Herter et al., 2015) are thought to contribute to the R3 
epoch response. There is also a large amount of work showing that the LLR response can be 
modulated by cognitive processes such as probabilistic outcomes (Beckley et al., 1991), 
evidence accumulation for decision-making (Selen et al., 2012) and verbal instructions 
(Hammond, 1956), indicative of pre-modulation by prefrontal cortex (Hartstra et al., 2011, 
2012; Noppeney et al., 2010; Philiastides et al., 2011). Our observation of reward modulation of 
LLR response is in line with these reports of cognitive pre-modulation. 

Generally, our results combined with previous work (Carroll et al., 2019; Codol et al., 2020a; 
Douglas and Parry, 1983; Stillings et al., 1968) show that feedback responses that are thought 
to directly involve associative cortices are modulated by reward (Figure 6b). In contrast, 
feedback responses that do not directly recruit associative cortices show no such modulation by 
reward. Together with previous work showing reduction in peripheral noise with reward (Codol 
et al., 2020a; Manohar et al., 2019), these results enable us to further complete the picture on 
how rewarding information triggers improvements in motor performance at the behavioural 
level. Outstanding questions remain on how reward leads to motor improvement, such as 
whether noise reduction may also occur centrally (Goard and Dan, 2009; Manohar et al., 2015; 
Pinto et al., 2013), or whether the cortico-cerebellar feedback loop is also involved in reward-
driven improvements (Becker and Person, 2019; Codol et al., 2020a; Miall et al., 2007). 

 

Methods 

Dataset and analysis code availability  

All behavioural data and analysis code will be made freely available online on the Open Science 
Framework website at https://osf.io/7t8yj/ upon publication. 

 

Participants 
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19 participants took part in this study and were remunerated CA$12 or 1 research credit per 
hour, plus performance-based remuneration. Most participants participated in all five tasks, 
namely target switch, SLR-LLR, proprioception-cued reaction times, cursor and target jump. The 
full participation roster is detailed in Table 1. In total, five sessions across five participants had 
to be excluded either for failing to perform at the required level for the task or as per task 
instructions. Participants made on average 1.62, 2.14, 1.58, 1.67 and 1.88 Canadian cents per 
rewarded trial on the target switch, SLR-LLR, cursor jump, target jump and reaction time task, 
respectively, and earned on average in total $6.98, $7.19, $4.92, $5.20 and $4.06 from 
performance, respectively. The tasks were divided into three sessions of 90 minutes each and 
performed two tasks per session maximum. The task order was counterbalanced across 
participants. All participants signed a consent form prior to the first session. Recruitment and 
data collection were done in accordance with the requirements of the research ethics board at 
Western University. 

 

 

 Task 

Participant 
Target 
Switch 

Cursor 
Jump 

SLR-
LLR 

Reaction Time 
Target 
Jump 

Included Excluded 
Grand 
total 

1 1 1 1 1 1 5   5 
2 1 1 1 1 1 5   5 
3 1 1 1 1 1 5   5 
4 1 1 1 1 1 5   5 
5 1 1 1 1 1 5   5 
6 1 1 1 1 1 5   5 
7 1   1 1  3   3 
8 1 0 1 1 1 4 1 5 
9 1 1 1 1 1 5   5 

10 1 1 1 1 1 5   5 
11 1 1 1 1 1 5   5 
12 1 1 0 1 1 4 1 5 
13 0   1 1  2 1 3 
14 1 1 1 1 1 5   5 
15 1 1 1 1 1 5   5 
16 1 1 1 0 1 4 1 5 
17   1 0   1 2 1 3 
18   1 1    2   2 

Included 15 15 16 15 15 76     

Excluded 1 1 2 1     5   

Grand 
Total 

16 16 18 16 15     81 

         

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.16.460659doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460659
http://creativecommons.org/licenses/by/4.0/


 
Table 1: Participant inclusion and exclusion for each experimental task. A “1” signifies that the 
participant data were included for the specific task and a “0” signifies that the participant 
performed the task but that the data collected were excluded from further analysis. An empty 
entry signifies that the participant did not take part in the task. 

 

Apparatus 

A BKIN Technologies (Kingston, ON) endpoint KINARM robot was used for the cursor jump and 
target jump tasks, and an exoskeleton robot from the same company was used for all the other 
tasks. In both cases the participant was seated in front of a horizontally placed mirror that 
blocked vision of the participant’s arm and reflected a screen above so that visual stimuli 
appeared in the same plane as the arm. Electromyographic activity of brachioradialis, triceps 
lateralis, pectoralis major, posterior deltoid, and biceps brachii was recorded using wired 
surface electrodes (Bagnoli, Delsys, Natick, MA). EMG and kinematics data were recorded at 
1000 Hz. 

For studies using the exoskeleton KINARM, the participant’s arm was rested on a boom that 
supported the limb against gravity and allowed for movement in a horizontal plane intersecting 
the centre of the participant’s shoulder joint. Pilot tests using an accelerometer fixed on the 
distal KINARM boom showed that logged perturbation timestamps corresponding to the onset 
of commanded robot torque preceded the acceleration of the distal end of the robot linkage by 
4 ms. Perturbation timestamps were adjusted accordingly for the analysis of experimental data. 

For studies using the endpoint KINARM, the robotic handle allowed for movement in a 
horizontal plane about 10-15 cm below the centre of the shoulder joint. In the experimental 
tasks tested here the start position of the robot handle was specified to be about 30 cm from 
the chest midline. In addition to the same five muscles that we recorded during the tasks 
described above using the exoskeleton KINARM, in the tasks involving the endpoint robot we 
also recorded the activity of the intermediate deltoid muscle. Reaction time measurements 
were aligned to the onset/offset of visual stimuli as measured by a using a photodiode attached 
to the display screen (see Target jump and cursor jump description in “Experimental design” 
section below for details). 

 

Experimental design 

General points 

In all tasks using mechanical perturbations, perturbation magnitudes were added to the 
background load. For instance, if a background torque load of -2 Nm was applied and a -4 Nm 
perturbation was specified, then during the perturbation the robot produced a -6 Nm torque. 
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In all tasks, the start position and the target(s) were the same colour, which was either pink or 
cyan blue depending on whether the trial was rewarded or non-rewarded. Target colour 
assignment to reward conditions was counterbalanced across participants. 

 

SLR-LLR 

The location of the tip of the participant’s right index finger was indicated by a 3 mm diameter 
white cursor. At the beginning of each trial, a 3 mm diameter start position appeared, along 
with a reward sign below the target showing “000” or “$$$” to indicate a non-rewarded or a 
rewarded trial, respectively. The start position was located so that the participant’s external 
shoulder angle was 45 degrees relative to the left-right axis, and the external elbow angle was 
90 degrees relative to the upper arm. When participants moved the cursor inside the start 
position the cursor disappeared. It reappeared if the participant exited the start position before 
the perturbation onset. After the cursor remained inside the start position for 150-200 ms, a 
background torque (+2 Nm) ramped up linearly in 500 ms at the shoulder and elbow to activate 
the extensor muscles. Then, following another 150-200 ms delay a 10 cm target appeared 
either at +20 or -20 degrees from the start position (rotated about the elbow joint). Following 
target appearance and after a 600 ms delay, the robot applied a ±2 Nm perturbation torque at 
the elbow and shoulder joints (Figure 2a-c). This combination of load on the shoulder and 
elbow was chosen to create pure elbow motion, as the robot torque applied at the shoulder 
counteracted the interaction torque arising at the shoulder due to elbow rotation (Maeda et al., 
2018, 2020). Because the time interval between the onset of the visual target and the onset of 
the perturbation was fixed, we tested for anticipatory triceps EMG activity between the 
manipulation and control groups in a 20 ms window immediately before the perturbation 
onset. We observed no difference, both for the SLR (no reward: W=83, r=0.61, p=0.43; with 
reward: W=88, r=0.65, p=0.30) and the LLR (no reward: W=70, r=0.51, p=0.92; with reward: 
W=82, r=0.60, p=0.46). Following the mechanical perturbation, participants were instructed to 
move the cursor as fast as possible to the target and stay inside it until the end of the trial. Each 
trial ended 800 ms after perturbation onset, at which point the target turned dark blue, the 
reward sign was extinguished, and the final value of the monetary return was displayed in its 
place. For non-rewarded trials, this was always “0 ¢” and for rewarded trials, this was calculated 
as the proportion of time spent in the target from the perturbation onset to the trial’s end: 

𝑟𝑒𝑡𝑢𝑟𝑛 = g𝑒−𝜏𝑝 

𝑝 = 1 − 𝑚𝑖𝑛 (
𝑥 − 𝑥0

𝑥𝑓 − 𝑥0
, 1) 

where 𝑥 is the time (ms) spent in the target, 𝑥0 = 500 is the minimum amount of time (ms) to 
receive a return, 𝑥𝑓 = 800 is the total duration (ms) of the trial, 𝑔 = 15 is the maximum return 

(¢), and 𝜏 is a free parameter adjusted based on pilot data to reduce the discrepancy between 
easier and harder conditions. In this study, we used 𝜏 = 1.428 and 𝜏 = 2.600 for an inward and 
outward perturbation with an outward target, respectively, and 𝜏 = 2.766 and 𝜏 = 1.351 for an 
inward and outward perturbation with an inward target, respectively. 
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The task consisted of 336 trials and was divided into three equal blocks with a free-duration 
break time between each block. Each block consisted of 112 trials, equally divided between 
inward and outward perturbation torques, inward and outward target positions, and rewarded 
and non-rewarded trials. The trial schedule was organised in epochs of 16 trials containing two 
of each combination of conditions, and the trial order was randomized within each epoch. 

For EMG analysis, inward and outward perturbations were used as the manipulation and 
control conditions, respectively, to observe the SLR on extensor muscles. To observe the LLR on 
the extensor muscles, inward perturbations were used when combined with an outward and 
inward target for the manipulation and control condition, respectively. 

 

Reaction times 

The proprioception-cued reaction time task used the same task as the SLR-LLR task, with 
several alterations. First, the background loads were applied to the elbow only, and inverted to 
-2 Nm to pre-activate the flexor muscles. Only inward targets were presented, meaning the task 
consisted of elbow flexion movements only. The starting position was located such that the 
external shoulder angle was 5 degrees relative to the left-right axis, and the external elbow 
angle was 90 degrees relative to the upper limb. Finally, the perturbation was applied only at 
the shoulder instead of both shoulder and elbow joints, and the perturbation magnitude was 
reduced to 0.5 Nm, meaning that the perturbation led to no significant elbow motion. 
Participants were informed to initiate a movement to the target as fast as possible following 
the shoulder perturbation. Monetary returns were calculated using the same formula as for the 
SLR-LLR task but with 𝜏 = 1.278 

For the choice reaction time task, the methods employed are described in Codol et al. (2020). 

 

Target jump and cursor jump 

The position of the endpoint KINARM handle held by participants was indicated by a 5 mm 
diameter white cursor. At the beginning of each trial, an 8 mm diameter start position was 
displayed, and below it a reward sign showing “000” or “$$$”to indicate a non-rewarded or a 
rewarded trial, respectively. At the same time, a 10 mm diameter target appeared 25 cm 
straight ahead from the start position (Figure 3f). When participants moved the cursor inside 
the start position a series of 4 tones were played on a speaker located beside the display 
screen, and participants were instructed to start the movement on the third tone and finish on 
the fourth tone. They were informed that their monetary returns were proportional to how 
close to a tone interval a reaching movement duration was. Movement duration was defined as 
the time interval between exiting the start position and when the cursor was inside the target 
and its tangential velocity dropped below 2 cm/sec. Once the cursor was inside the target and 
its tangential velocity dropped below 2 cm/sec, the target turned dark blue and the value of the 
monetary return for that trial was displayed 3 cm straight ahead of the target. In the target 
jump task, when the movement crossed past 13 cm from the start position, the target jumped 
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immediately 3 cm either right or left from its original position or stayed at its original position 
(no-jump), with all three possibilities occurring with equal frequency. In the cursor jump task, 
the cursor position rather than the target jumped right or left or did not jump. 

Monetary reward was given by an equation based on deviation from the desired movement 
time, which corresponded to the duration of an interval between two acoustic tones: 

𝑝 = |
𝑀𝑇 − 𝑀𝑇∗

𝑀𝑇𝑑𝑒𝑣
| 

𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑔𝑒−𝜏𝑝 + 𝑏 

where 𝑀𝑇 is the trial’s movement time (ms), 𝑀𝑇∗ = 600 is the desired movement time (ms), 
𝑀𝑇𝑑𝑒𝑣 = 300 is the maximum deviation from the desired movement time (ms) to be rewarded, 
and 𝑔, 𝑏, and 𝜏 are free parameters. For right and left jump trials, we used 𝑔 = 0.136, 𝑏 =
−0.067, and 𝜏 = 0.856. For no-jump trials, we used 𝑔 = 0.128, 𝑏 = −0.067, and 𝜏 = 0.502. 

Both the target and cursor jumps consisted of 312 trials and were divided into two blocks with a 
free-duration break time between each block. Each block consisted of 156 trials, equally divided 
between rewarded and non-rewarded trials, and a third of leftward trials, rightward trials, and 
no-jump trials. The trial schedule was organised in epochs of 12 trials containing two of each 
combination of conditions, and the trial order was randomized within each epoch. 

For EMG analysis, leftward target jumps and rightward cursor jumps were used as the 
manipulation condition because they both led to contraction of the pectoralis muscle to adjust 
the movement. Rightward target jumps and leftward cursor jumps were used as control 
conditions. No-jump conditions were not used for EMG analysis. All EMG signals were aligned 
to a photodiode signal recording the appearance of a white, 8 mm diameter target at the same 
time as the jump occurrence. The photodiode target was positioned on the screen horizontally 
35 cm to the left from the starting position and vertically at the same position as the cursor 
jumping position (in the cursor jump task) or as the target position (target jump task). This 
target was covered by the photodiode sensor and was therefore not visible to participants. 

 

Target switch 

The position of participants’ right index fingertip was indicated by a 3 mm diameter white 
cursor. At the beginning of each trial, a 1 cm start position appeared, and a reward sign showing 
“000” or “$$$” was displayed to indicate a non-rewarded or a rewarded trial, respectively. The 
start position was located so that the external shoulder angle was 45 degrees relative to the 
left-right axis, and the external elbow angle was 90 degrees relative to the upper arm. When 
participants moved the cursor inside the start position the cursor disappeared. it reappeared if 
the cursor exited the start position before the target(s) appeared. Once inside the start 
position, the robot applied -2 Nm background torques which were ramped up linearly in 500 ms 
at the shoulder and elbow to activate the flexor muscles. Then, following a delay of 600 ms to 
record baseline EMG activity, a 2 cm target appeared at +20 degrees (inward) from the start 
position (rotated about the elbow joint). In half of trials, a second, identical target also 
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appeared at -20 degrees (outward) from the start position. Once the target(s) appeared, 
participants initiated their reaching movement. Participants were instructed to always reach for 
the inward target, even if the second, outwards target also appeared. During the movement 
itself, the cursor position was not visible to prevent any visual feedback from contributing to 
performance. In half of trials, a -4 Nm perturbation occurred at the elbow and shoulder joints 
when the movement crossed an invisible 2 cm threshold distance from the centre of the start 
position. Note that this perturbation led to an outward perturbation because the torque is 
negative. Participants were instructed to push through the perturbation to reach and stop 
inside the inward target if only the inward target was available, leading to increased 
brachioradialis activity (control condition); if two targets were available, they were instructed to 
relax their arm and let the perturbation push them toward the outward target and stop there 
(manipulation condition). Therefore, this task design resulted in a co-occurrence of the target 
switch and divergence of EMG activity at the brachioradialis level, enabling us to assess the 
feedback response that underlies goal target switch. In trials with no perturbations, participants 
were instructed to carry on the reach toward the inward target, regardless of whether one or 
two targets were displayed in that trial. 

Cursor feedback was restored when the hand was less than 3 cm away from the centre of the 
target. When the (correct) target was reached, all the targets turned dark blue, the reward sign 
was extinguished, and the final monetary return for the trial appeared where the reward sign 
was located before. For non-rewarded trials, this was always “0 ¢” and for rewarded trials, the 
return was higher for shorter movement times. Movement times were defined as the time 
interval (ms) between exiting the start position and the trial finishing. The start position was 
considered as exited when the radial distance from its centre was greater than 2 cm, at which 
point the perturbation would then occur if the trial included one. A trial was considered 
finished when the cursor was inside the (correct) target and its tangential velocity dropped 
below 10 cm/sec. The exact return equation was: 

𝑝 =
𝑀𝑇

𝑀𝑇𝑛𝑜𝑟𝑚
 

𝑟𝑒𝑡𝑢𝑟𝑛 = 𝑔 ∗ 𝑚𝑎𝑥(𝑎𝑒−𝜏𝑝 + 𝑏 , 0) 

where 𝑀𝑇 is the trial’s movement time (ms), 𝑀𝑇𝑛𝑜𝑟𝑚 = 600 is a normalising scalar, 𝑔 = 25 is 
the maximum return (dollar cents), and 𝑎, 𝑏 = −0.267, and 𝜏 are free parameters. The 
parameter 𝑎 was set at 0.587 and 0.749 for two-target trials with and without a perturbation, 
respectively, and 0.985 and 0.739 for one-target trials with and without a perturbation, 
respectively. The parameter 𝜏 was set at 0.331 and 1.382 for two-target trials with and without 
a perturbation, respectively, and 1.346 and 1.343 for one-target trials with and without a 
perturbation, respectively. 

The task consisted of 432 trials and was divided into 3 blocks with a break time between each 
block. Each block consisted of 144 trials, equally divided between one- and two-targets trials, 
perturbation and no-perturbation trials, and rewarded and non-rewarded trials. The trial 
schedule was organised in epochs of 16 trials containing two of each combination of conditions, 
and the trial order was randomized within each epoch. 
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EMG signal processing 

EMG signals were sampled at 1000 Hz, band-pass filtered between 20 Hz and 250 Hz, and full-
wave rectified. Before each task, participants’ baseline EMG signal was acquired by asking 
participants to position their arm such that the cursor remained, motionless, at the start 
position for 2 seconds (against the background load, if applicable for the task). This was 
repeated 6 times, after which the task started normally. Following band-pass filtering and full-
wave rectification, the EMG signal of each muscle from 250 ms after entering the start position 
to 250 ms before the end of the 2 seconds window was concatenated across all 6 trials and 
averaged to obtain a mean baseline EMG scalar. EMG measures during the task were then 
normalised by each muscle’s baseline scalar. Follow-up analyses (latency, feedback gains, co-
contraction) were performed subsequently on the filtered, full wave rectified and normalised 
EMG traces. 

 

Statistical analysis 

To determine the time at which EMG signals for different task conditions diverged, we used 
Receiver operating characteristic (ROC) analysis. We used the same approach as in Weiler et al. 
(2015), using a 25-75% threshold of area under the curve (AUC) for establishing signal 
discrimination. Discrimination was done for each participant and each reward condition 
independently, using all trials available for each contrast without averaging. Once the AUC 
threshold was crossed, we performed a segmented linear regression on the AUC before it 
crossed the 25-75% threshold. We minimized the sums-of-squared residuals to find the 
inflexion point, that is, where the two segments of the segmented linear regression form an 
angle (see Weiler et al. (2015) and analysis code online for details). 

To compute feedback gains, for each feedback response considered we defined a 25 ms 
window that started at that response’s latency found for each participant independently using 
ROC analysis. We then calculated the integral of average EMG signals in that window using the 
trapezoid rule (MATLAB’s built-in trapz function), for the control and manipulation condition 
and each reward value. For instance, for the target switch task the control condition is defined 
as trials with a perturbation and only one target (no switch), while the manipulation condition is 
defined as trials with a perturbation and two targets (switch occurring). We then calculated the 
absolute difference between those two conditions as a measure of feedback gains. We then 
calculated the log-ratio of the rewarded to non-rewarded conditions as 
log(𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑔𝑎𝑖𝑛 𝑛𝑜𝑛 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 𝑔𝑎𝑖𝑛⁄ ). For the R2 and R3 epochs of the LLR, the 25 ms 
window was defined as the 1st-to-25th ms and 26th-to-50th ms post-response, respectively. To 
test for the epoch-reward interaction between R2 and R3, the rewarded gain and non-
rewarded gain for each epoch was used directly instead of computing their log-ratio. We used 
ratios to ensure that changes in feedback gains are normalized within participants to EMG 
activity in the non-rewarded condition. This is because EMG activity levels can greatly vary over 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.16.460659doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.16.460659
http://creativecommons.org/licenses/by/4.0/


time, making normalization by subtraction unviable. The log function was then applied to 
linearize the ratio values. 

To test for differences between conditions we used Wilcoxon signed-rank tests. For each test, 
we reported the test statistic 𝑊, the effect size 𝑟 (Kerby, 2014) and the p-value. To compare 
LLR feedback gains between the R2 and R3 epochs, a repeated-measure Analysis of Variance 
was used, as there is no established non-parametric equivalent for repeated measures designs. 
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