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Domain-Specific Working Memory, But Not
Dopamine-Related Genetic Variability, Shapes
Reward-Based Motor Learning

Peter Holland,* “Olivier Codol,* Elizabeth Oxley, Madison Taylor, Elizabeth Hamshere, Shadiq Joseph,
Laura Huffer, and “Joseph M. Galea
School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

The addition of rewarding feedback to motor learning tasks has been shown to increase the retention of learning, spurring interest in its
possible utility for rehabilitation. However, motor tasks using rewarding feedback have repeatedly been shown to lead to great interin-
dividual variability in performance. Understanding the causes of such variability is vital for maximizing the potential benefits of reward-
based motor learning. Thus, using a large human cohort of both sexes (1 = 241), we examined whether spatial (SWM), verbal, and mental
rotation (RWM) working memory capacity and dopamine-related genetic profiles were associated with performance in two reward-based
motor tasks. The first task assessed the participant’s ability to follow a slowly shifting reward region based on hit/miss (binary) feedback.
The second task investigated the participant’s capacity to preserve performance with binary feedback after adapting to the rotation with
full visual feedback. Our results demonstrate that higher SWM is associated with greater success and an enhanced capacity to reproduce
a successful motor action, measured as change in reach angle following reward. In contrast, higher RWM was predictive of an increased
propensity to express an explicit strategy when required to make large reach angle adjustments. Therefore, SWM and RWM were reliable,
but dissociable, predictors of success during reward-based motor learning. Change in reach direction following failure was also a strong
predictor of success rate, although we observed no consistent relationship with working memory. Surprisingly, no dopamine-related
genotypes predicted performance. Therefore, working memory capacity plays a pivotal role in determining individual ability in reward-
based motor learning.
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Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic behaviors that cause varying degrees of
task success. Yet, the factors determining an individual’s capacity to use reward-based feedback are unclear. Here, we assessed a
wide range of possible candidate predictors, and demonstrate that domain-specific working memory plays an essential role in
determining individual capacity to use reward-based feedback. Surprisingly, genetic variations in dopamine availability were not
found to play a role. This is in stark contrast with seminal work in the reinforcement and decision-making literature, which show
strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, our results provide novel insights
into reward-based motor learning, highlighting a key role for domain-specific working memory capacity. j

ignificance Statement

Introduction recruitment of a variety of systems (Taylor and Ivry, 2014). Argu-

When performing motor tasks under altered environmental con- ~ ably; the most studied of those systems is cerebellum-dependent
ditions, adaptation to the new constraints occurs through the adaptation, which consists of the implicit and automatic recalibra-
tion of mappings between actual and expected outcomes through

sensory prediction errors (Tseng et al., 2007; Morehead et al., 2017).
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(Taylor and Ivry, 2011; Bond and Taylor, 2015). We label this pro-
cess “explicit control” (Codol et al., 2018; Holland et al., 2018), al-
though it has also been referred to as strategy (Taylor and Ivry, 2011)
or explicit re-aiming (Morehead et al., 2015). Recently, it has been
proposed that reinforcement learning, whereby the memory of suc-
cessful or unsuccessful actions is strengthened or weakened, respec-
tively, may also play a role (Huang et al., 2011; Izawa and Shadmehr,
2011; Shmuelof et al., 2012). Such reward-based reinforcement has
been assumed to be an implicit and automatic process (Haith and
Krakauer, 2013). However, recent evidence suggests that phenom-
ena attributed to reinforcement-based learning during visuomotor
rotation tasks can largely be explained through explicit processes
(Codol et al., 2018; Holland et al., 2018).

One outstanding feature of reinforcement-based motor learn-
ing is the great variability expressed across individuals (Therrien
et al., 2016, 2018; Codol et al., 2018; Holland et al., 2018). What
factors underlie such variability is unclear. If reinforcement is
explicitly grounded, it could be argued that individual working
memory capacity (WMC), which is reliably related to the pro-
pensity to use explicit control in classical motor adaptation tasks
(Anguera et al., 2010, 2012; Christou et al., 2016; Holland et al.,
2018; Sidarta et al., 2018), would also predict performance in
reinforcement-based motor learning. Anguera et al. (2010) dem-
onstrated that mental rotation WMC (RWM), unlike other
forms of working memory (WM), such as verbal WMC (VWM),
correlates with explicit control. Recently, Christou et al. (2016)
reported similar results with spatial WMC (SWM). If this extends
to reward-based motor learning, this would strengthen the pro-
posal that it bears a strong explicit component.

Another potential contributor to this variability is genetic
profile. In previous work (Codol et al., 2018; Holland et al., 2018),
we argue that reinforcement-based motor learning performance
relies on a balance between exploration and exploitation of the
task space, a feature reminiscent of structural learning and
reinforcement-based decision-making (Sutton and Barto, 1998;
Daw etal., 2005; Frank et al., 2009). A series of studies from Frank
and colleagues suggest that individual tendencies to express
explorative/exploitative behavior can be predicted based on
dopamine-related genetic profile (Frank et al., 2007, 2009; Doll et
al., 2016). Reinforcement has consistently been linked to dopa-
minergic function in a variety of paradigms; thus, such a relation-
ship could also be expected in reward-based motor learning
(Peknyetal., 2015). Specifically, Frank and colleagues focused on
catecholamine-O-methyl-transferase (COMT), dopamine- and
cAMP-regulated neuronal phosphoprotein (DARPP32), and do-
pamine receptor D2 (DRD2), and suggest a distinction between
COMT-modulated exploration and DARPP32- and DRD2-
modulated exploitation (Frank et al., 2009).

Consequently, we investigated the influence of WMC (RWM,
SWM, and VWM) and genetic variations in dopamine metabo-
lism (DRD2, DARPP32, and COMT) on individuals’ ability to
perform reward-based motor learning. We examined this using
two established reward-based motor learning tasks. First, a task
analogous to a gradually introduced rotation (Holland et al.,
2018) required participants to learn to adjust the angle at which
they reached to a slowly and secretly shifting reward region (Ac-
quire); second, a task with an abruptly introduced rotation
(Shmuelofetal., 2012; Codol et al., 2018) required participants to
preserve performance with reward-based feedback after adapting
to a visuomotor rotation (Preserve). The use of these two tasks
enabled us to examine whether similar predictors of performance
explained participant’s capacity to acquire and preserve behavior
with reward-based feedback.
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Materials and Methods

Before the start of data collection, the sample size, variables of interest,
and analysis method were preregistered. The preregistered information,
data, and analysis code can be found online at https://osf.io/j5v2s/ and
https://osf.io/rmwc2/ for the Preserve and Acquire tasks, respectively.

Participants

A total of 121 participants (30 male, mean age: 21.06 years, range: 18—32
years) and 120 participants (16 male, mean age: 19.24 years, range: 18 -32
years) were recruited for the Acquire and Preserve tasks, respectively. All
participants provided informed consent and were remunerated with ei-
ther course credit or money (£7.50/h). All participants were free of psy-
chological, cognitive, motor, or uncorrected visual impairment. The
study was approved by and performed in accordance with the local re-
search ethics committee of the University of Birmingham (Birmingham,
UK).

Experimental design

Participants were seated before a horizontally fixed mirror reflecting a
screen placed above, on which visual stimuli were presented. This ar-
rangement resulted in the stimuli appearing at the level on which partic-
ipants performed their reaching movements. The Acquire (gradual) and
Preserve (abrupt) tasks were performed on two different stations, with a
KINARM (BKIN Technology; sampling rate: 1000 Hz) and a Polhemus
3SPACE Fastrak tracking device (sampling rate: 120 Hz), used respec-
tively. The Acquire task was run using Simulink (The MathWorks) and
Dexterit-E (BKIN Technology), whereas the Preserve task was run using
MATLAB (The MathWorks) and Psychophysics toolbox (Brainard,
1997). The Acquire task used the same paradigm and equipment as in
Holland et al. (2018), with the exception of the maximum reaction time,
which was increased from 0.6 to 1 s; and the maximum movement time,
which was reduced from 1 to 0.6 s. The Preserve task used the same setup
and display as in Codol et al. (2018); however, the number of “refresher”
trials during the binary feedback blocks was increased from one to two in
every 10 trials. The designs were kept as close as possible to their respec-
tive original publications to promote replication and comparability
across studies. In both tasks, reaching movements were made with the
dominant arm. Both the Acquire and Preserve tasks have previously been
examined in isolation from each other: Acquire task (Therrien et al.,
2016, 2018; Cashaback et al., 2017, 2019; Holland et al., 2018) and Pre-
serve task (Shmuelofetal., 2012; Codol et al., 2018), and we maintain this
distinction here. However, it should be noted that the two tasks are
essentially visuomotor rotation tasks. One of the aims of this study was to
determine whether similar mechanisms underlie the use of binary feed-
back in both the learning of a gradual rotation and maintenance of a
previously learnt abrupt rotation. Therefore, despite the similarities, we
analyze the results of each task in isolation in addition to comparing the
results across tasks.

Reaching tasks
Acquire task. Participants performed 670 trials, each of which followed a
stereotyped timeline. The starting position for each trial was in a consis-
tent position ~30 cm in front of the midline and was indicated by a red
circle (1 cm radius). After holding the position of the handle within the
starting position, a target (red circle, 1 cm radius) appeared directly in
front of the starting position at a distance of 10 cm. Participants were
instructed to make a rapid “shooting” movement that passed through the
target. If the cursor position at a radial distance of 10 cm was within a
reward region (*5.67°, initially centered on the visible target; Fig. 1A,
gray region), the target changed color from red to green and a green tick
was displayed just above the target position, informing participants of the
success of their movement. However, if the cursor did not pass through
the reward region, the target disappeared from view and no tick was
displayed, signaling failure (binary feedback). After each movement, the
robot returned to the starting position and participants were instructed
to passively allow this.

For the first 10 trials, the position of the robotic handle was displayed
as a white cursor (0.5 cm radius) on screen. Following this practice block,
the cursor was extinguished for the remainder of the experiment and
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Figure 1.  Experimental design. A, Time course of the Acquire task with the different exper-
imental periods labeled. Gray region represents the reward region, which gradually rotated
away from the visual target after the initial baseline period. Rectangle enclosing the green tick
above the axes represents trials in which reward was available. Rectangle with the “eye” symbol
represents when vision was not available. B, Time course of the Preserve task. After adapting to
an initial rotation with vision available, vison was removed (eye symbol) and reward-based
feedback was introduced (tick and cross above the axes). Before the no-feedback blocks, par-
ticipants were instructed to remove any strategy they had been using. , WMC tasks. The three
tasks followed a stereotyped timeline with only the items to be remembered differing. Each trial
consisted of four phases (Fixation, Encoding, Maintenance, and Recall) with the time allocated
to each displayed below.

participants only received binary feedback. The baseline block consisted
of the first 40 trials under binary feedback. During this period, the reward
region remained centered on the visible target. Subsequently, unbe-
knownst to the participant, the reward region rotated in steps of 1° every
20 trials; the direction of rotation was counterbalanced across partici-
pants. After reaching a rotation of 25°, the reward region was held con-
stant for an additional 20 trials. Performance during these last 20 trials
was used to determine overall task success. Subsequently, binary feed-
back was removed, and participants were instructed to continue reaching
as they were (maintain block) for the following 50 trials. Following this,
participants were then informed that the reward region shifted during
the experiment but not of the magnitude or the direction of the shift.
They were then instructed to return to reaching in the same manner
as they were at the start of the experiment (remove block, 50 trials).
During the learning phase of the task, participants were given a 1 min rest
after Trials 190 and 340.

Preserve task. Participants performed 515 trials in total. On each trial,
participants were instructed to make a rapid “shooting” movement that
passed through a target (white circle, radius: 0.125 cm) visible on the
screen. The starting position for each trial was indicated by a white square
(width: 1 cm) ~30 cm in front of the midline, and the target was located
at angle of 45° from the perpendicular in a counterclockwise direction at
a distance of 8 cm. The position of the tracking device attached to the
fingertip was displayed as a cursor (green circle, radius: 0.125 cm). When
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the radial distance of the cursor from the starting position exceeded 8 cm,
the cursor feedback disappeared, and the end position was displayed
instead.

First, participants performed a baseline period of 40 trials, during
which the position of the cursor was visible, and the cursor accurately
reflected the position of the fingertip. In the adaptation block (75 trials),
participants were exposed to an abruptly introduced 20° clockwise visuo-
motor rotation of the cursor feedback (Fig. 1B). Subsequently, all visual
feedback of the cursor was removed, and participants received only bi-
nary feedback. If the end position of the movement fell within a reward
region, the trial was considered successful and a tick was displayed; oth-
erwise, a cross was displayed. The reward region was centered at a clock-
wise rotation of 20° with respect to the visual target with a width of 10°%
that s, it was centered on the direction that successfully accounted for the
previously experienced visuomotor rotation. Binary feedback was pro-
vided for 200 trials divided into 2 blocks of 100 trials (asymptote blocks).
Furthermore, participants experienced 2 “refresher” trials for every 10
trials, where rotated visual feedback of the cursor position was again
accessible (Shmuelof et al., 2012; Codol et al., 2018). This represents an
increase compared with Codol et al. (2018) because participants in this
study tended to have poorer performance under binary feedback, possi-
bly due to a fatigue effect following the WM tasks (Anguera et al., 2012)
(see Discussion). Finally, two blocks (100 trials each) with no perfor-
mance feedback were used to assess retention of the perturbation (no-
feedback blocks). Before the first of those two blocks, participants were
informed of the visuomotor rotation, asked to stop accounting for it
through aiming off target and to aim straight at the target.

WM tasks

Participants performed three WM tasks, all of which followed the same
design with the exception of the nature of the items to be remembered
(Fig. 1C). All WM tasks were run using MATLAB (The MathWorks) and
Psychophysics toolbox (Brainard, 1997). At the start of each trial, a white
fixation cross was displayed in the center of the screen for a period of
0.5-1 s randomly generated from a uniform distribution (fixation period
in Fig. 1C). In the encoding period, the stimulus to be remembered was
displayed for 1 s and then subsequently replaced with a blue fixation cross
for the maintenance period, which persisted for 3 s. Finally, during the
recall period, participants were given a maximum of 4 s to respond by
pressing one of three keys on a keyboard with their dominant hand. The
“1” key indicated that the stimuli presented in the recall period was a
“match” to that presented in the encoding period; the “2” key indicated
a “nonmatch”; and “3” indicated that the participant was unsure as to the
correct answer. Each WM task contained 5 levels of difficulty with the 12
trials presented for each, 6 of which were trials in which “match” was the
correct answer and 6 in which “nonmatch” was the correct answer. Con-
sequently, each WM task consisted of 60 trials, and the order in which the
tasks were performed was pseudorandomized across participants. Before
the start of each task, participants performed 10 practice trials to famil-
iarize themselves with the task and instructions. For both the Acquire and
Preserve tasks, the WM tasks were performed in the same experimental
session as the reaching. However, in the case of the Acquire task, the WM
tasks were performed after the reaching task, whereas for the Preserve
task the WM tasks were performed first.

In the RWM task (Fig. 1C, top row), the stimuli consisted of six 2D
representations of 3D shapes drawn from an electronic library of the
Shepard and Metzler type stimuli (Peters and Battista, 2008). The shape
presented in the recall period was always the same 3D shape presented in
the encoding period after undergoing a screen-plane rotation of 60°,
120°, 180°, 240°, or 300°. In “match” trials, the only transform applied
was the rotation; however, in “nonmatch” trials, an additional vertical
axis mirroring was also applied. The difficulty of mental rotation has
been demonstrated to increase with larger angles of rotation (Shepard
and Metzler, 1971); therefore, the different degrees of rotation corre-
sponded to the 5 levels of difficulty. However, given the symmetry of two
pairs of rotations (60 and 300, 120 and 240), these 5 levels were collapsed
to 3 for analysis.

In the SWM task (Fig. 1C, middle row), stimuli in the encoding period
consisted of a variable number of red circles placed within 16 squares
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arranged in a circular array (McNab and Klingberg, 2008). In the recall
period, the array of squares was presented without the red circles; and
instead, a question mark appeared in one of the squares. Participants
then answered a question (“Was there a red dot in the square marked by a
question mark?”) by pressing a corresponding key. In “match” trials, the
question mark appeared in one of the squares previously containing a red
circle; and in “nonmatch” trials, it appeared in a square that was previ-
ously empty. Difficulty was scaled by varying the number of red circles
(i.e., the number of locations to remember) from 3 to 7.

In the VWM task (Fig. 1C, bottom row), participants were presented
with a list of a variable number of consonants during the encoding pe-
riod. In the recall period, a single consonant was presented, and partici-
pants answered the question (“Was this letter included in the previous
array?”). Thus, the letter could either be drawn from the previous list
(“match” trials) or have been absent from the previous list (“nonmatch”
trials). Difficulty in this task was determined by the length of the list to be
remembered, ranging from 5 to 9.

Both the SWM and RWM tasks have been suggested to fall under the
general umbrella term of spatial ability (Buszard and Masters, 2018).
However, Miyake et al. (2001) suggest that, although both RWM and
short-term storage of spatial information (i.e., SWM) are within the
spatial domain, RWM appears to rely more heavily on executive function
and SWM on basic short-term storage of spatial information. Further-
more, previous studies have found relationships between motor learning
and this SWM task (Christou et al., 2016; Vandevoorde and Orban de
Xivry, 2019) and tasks similar to our RWM task (Anguera et al., 2010).
Therefore, we included both tasks to investigate whether there was any
severability in their relationships with reaching performance and lever-
aged our use of two separate reaching tasks and large cohorts to probe
whether this was due to specific task parameters.

Genetic sample collection and profiling

COMT is thought to affect DA function mainly in the PFC (Egan et al.,
2001; Goldberg et al., 2003), a region known for its involvement in WM
and strategic planning (Anguera et al., 2010; Doll et al., 2015), whereas
DARPP32 and DRD2 act mainly in the basal ganglia to promote exploit-
ative behavior, possibly by promoting selection of the action to be per-
formed (Frank et al., 2009). Consequently, we focused here on single
nucleotide polymorphisms (SNPs) related to those genes: RS4680
(COMT) and RS907094 (DARPP32). Regarding DRD2, there are two
potential SNPs available, RS6277 and RS1800497. Although previous
studies focusing on exploration and exploitation have assessed RS6277
expression (Frank et al., 2007, 2009; Doll et al., 2016), it should be noted
that this SNP varies greatly across ethnic groups, with some allelic varia-
tions being nearly completely absent in non-Caucasian-European
groups (e.g., see RS6277 in Auton et al,, 2015). This has likely been
inconsequential in previous work, as Caucasian-European individual
represented the majority of sampled groups; here, however, this repre-
sents a critical shortcoming, as we aim at investigating a larger and more
representative population, including other ethnic groups. Consequently,
we based our analysis on the RS1800497 allele of the DRD2 gene
(Pearson-Fuhrhop et al., 2013).

At the end of the task, participants were asked to produce a saliva
sample, which was collected, stabilized, and transported using Oragene.
DNA saliva collection kits (OG-500, DNAgenotek). Participants were re-
quested not to eat or drink anything except water for at least 2 h before
sample collection. Once data collection was completed across all partici-
pants, the saliva samples were sent to LGC (https://www.lgcgroup.com/) for
DNA extraction (per Oragene protocols: https://www.dnagenotek.com/)
and genotyping. SNP genotyping was performed using the KASP SNP geno-
typing system. KASP is a competitive allele-specific PCR incorporating a
FRET quencher cassette. Specifically, the SNP-specific KASP assay mix (con-
taining two different, allele-specific, competing forward primers) and the
universal KASP master mix (containing FRET cassette plus Taq polymerase
in an optimized buffer solution) were added to DNA samples and a thermal
cycling reaction performed, followed by an endpoint fluorescent read ac-
cording to the manufacturer’s protocol. All assays were tested on in-house
validation DNA before being run on project samples. No-template controls
were used, and 5% of the samples had duplicates included on each plate to
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enable the detection of contamination or nonspecific amplification. All as-
says had >90% call rates. Following completion of the PCR, all genotyping
reaction plates were read on a BMG PHERAStar plate reader. The plates were
recycled until a laboratory operator was satisfied that the PCR had reached its
endpoint. In-house Kraken software then automatically called the genotypes
for each sample, with these results being confirmed independently by two
laboratory operators. Furthermore, the duplicate saliva samples collected
from 5% of participants were checked for consistency with the primary
sample. No discrepancies between primary samples and duplicates were
discovered.

Data analysis

Acquire task. Reach trials containing movement times over 0.6 or <0.2's
were removed from analysis (6.9% of trials). The endpoint angle of each
movement was defined at the time when the radial distance of the cursor
exceeded 10 cm. This angle was defined in relation to the visible target
with positive angles indicating clockwise rotations. Endpoint angles and
target angles for participants who experienced the counterclockwise ro-
tations were sign-transformed. The explicit component of retention was
defined as the difference between the mean reach angle of the maintain
block and the remove block, whereas the implicit component was the
difference between the mean reach angle of the remove block and base-
line (Werner et al., 2015). Participants that achieved a mean reach angle
within the reward region during the final 20 trials before the maintain
block were considered “successful” in learning the rotation; otherwise,
they were considered “unsuccessful.” As in Holland et al. (2018), for
unsuccessful participants, the largest angle of rotation at which the mean
reach angle fell within the reward region was taken as the end of success-
ful performance, and only trials before this point were included for fur-
ther analysis. Success rate (SR) was defined as the percentage of trials
during the learning blocks in which the endpoint angle was within the
reward region. To examine the effect of reward on the change in endpoint
angle on the subsequent trial, we examined the magnitude and variability
of changes in endpoint angle between consecutive trials (Therrien et al.,
2016, 2018; Holland et al., 2018; Sidarta et al., 2018). To calculate the
median absolute change following rewarded (AR) and unrewarded (AP)
trials, we extracted the changes in reach angle following each trial type
and calculated the median of the absolute values of these changes for each
participant. These measures therefore represent the median of the mag-
nitude of changes in reach angle, regardless of direction. Furthermore, to
examine the variability of trial-by-trial adjustments (MAD[AR] and
MADI[AP] for rewarded and unrewarded trials, respectively), we calcu-
lated the median absolute deviation of the changes in reach angle. It is
important to note that AR and AP are calculated from the absolute mag-
nitude of the changes in reach angle, whereas MAD[AR] and MAD[AP]
are calculated from the nonabsolute values (including the direction of
change).

Preserve task. Reach trials containing movement times over 1 s were
removed from analysis (2.38% of trials). The endpoint angle for each
movement was defined at the time that the radial distance of the cursor
from the start position exceeded 8 cm. Trials in which the error was >80°
were excluded from further analysis (0.94% of trials). As in Codol et al.
(2018), learning rate was calculated by fitting an exponential function to
the angular error between cursor and target for trials in the adaptation
block, with the B value taken as the learning rate (mean R* = 0.34 *
0.15). The B estimates attained from all fits were first sign-transformed
and then log-transformed to counteract skewness before entering the
regression analysis. Using this method, a value close to 0 indicated faster
learning, whereas more negative values indicated slower learning. Similar
to Codol et al. (2018), SR, corresponding to percentage of rewarded
trials, was measured separately in the first 30 and last 170 trials of the
asymptote blocks and labeled early and late SR, respectively. This reflects
a dichotomy between a dominantly exploration-driven early phase and a
later exploitation-driven phase. The analysis of changes in reach angle
(AR and AP) was confined to the last 170 trials of the asymptote blocks.
Implicit retention was defined as the difference between the average base-
line reach direction and the mean reach direction of the last 20 trials of
the last no-feedback block (Codol et al., 2018). Analysis of changes in
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reach angle following rewarded trials was not preregistered but was in-
cluded post hoc.

Exploratory analysis of reaching data. To understand which outcome
variables in the reaching tasks were predictive of overall task success, we
split the learning period into two sections for every participant. We as-
sessed trial-by-trial changes in endpoint angle in the first section and
compared them with SR in the second section. For the Acquire task, we
assessed trial-by-trial adjustments during the learning block, excluding
the final 20 trials, and compared them with SR in the last 20 trials of the
learning block. In the Preserve task, we measured adjustments in the first
100 trials of the asymptote blocks and compared them with SR in the last
100 trials of the asymptote blocks.

WM tasks. WM performance was defined as the average percentage of
correct responses across the three highest levels of difficulty for each task.
In the case of the RWM task, the symmetrical arrangement of the angles
of rotation in effect produced three levels of difficulty and therefore all
trials were analyzed.

Genetics. Genes were linearly encoded, with heterozygote alleles being
0, homozygote alleles bearing the highest dopaminergic state being 1, and
homozygote alleles bearing the lowest dopaminergic state being —1
(Table 1). All groups were assessed for violations of the Hardy—Weinberg
equilibrium. The participant pool in the Preserve task was in Hardy—
Weinberg equilibrium for all three genes considered. In the Acquire task
population, COMT and DRD2 were in Hardy—Weinberg equilibrium,
but DARPP32 was not (p = 0.002), with too few heterozygotes. There-
fore, the DARPP32 alleles were recoded, with the heterozygotes (0) and
the smallest homozygote group (C:C, —1) combined and recoded as 0.

Statistical analysis

Regressions were performed using the linear Lasso method (Tibshirani,
1996) (lasso function in MatLab’s Statistics and Machine Learning Tool-
box). Lasso regression uses a shrinkage method that allows for some
predictors to be shrunk to a value of 0, effectively removing them from
the regression model. Therefore, the method acts as a selection method
for predictors in a way analogous to stepwise regression. We used a
10-fold cross validation approach to calculate the mean squared error
(MSE) over a range of values of a penalty term A. Specifically, as A in-
creases, the shrinkage of predictor values increases. For A = 0, the model
reduced to a standard linear regression, as all predictors were included
without any shrinkage. Cross validation protects against the problem of
overfitting by calculating the MSE on data “unseen” by the model during
fitting. For any given outcome variable, if its MSE(A) function exhibited
a minimum value within its defined boundaries, the model associated
with that minimum value was considered selected. If no minimum was
observed, this signified that an empty model was a better fit than any
other possible model. If such minimum was detected in the MSE(A)
function, the B estimates from that model (i.e., at that value of ) were
taken. We repeated this procedure 1000 times to obtain the distribution
of the true B from the estimates (Hastie et al., 2015). In order for a
potential variable to be considered a selected predictor, that predictor
should be selected (i.e., B # 0) in at least 80% of the repetitions. The
threshold of 80% was chosen as to maintain sufficient sensitivity while
still returning relatively sparse models. We report the median 3 estimate
in the text for all selected predictors.

To understand what genetic and WM factors are predictive of perfor-
mance in the Acquire task, we performed a lasso regression of the seven
predictors (three allelic variations, three WM, and ethnicity) onto each of
several outcome measures representative of performance: SR, implicit
and explicit retention, AR, MAD[AR], AP, and MAD[AP]. For the Pre-
serve task, we performed separate lasso regressions using the same seven
predicators for the following outcome variables: baseline reach direction
as a control variable, learning rate in the adaptation block, early and late
SR in the asymptote blocks (first 30 and last 170 trials) (Codol et al.,
2018), retention in the no-feedback blocks, and AR and AP during the
asymptote blocks. We adopted a parsimonious approach when interpret-
ing the results of the regression analysis and gave particular credence to
results reproduced by the analysis across both tasks.

Before the regression analysis, all predictors and predicted variables
were standardized (z-scored). For all nonordinal variables, individual
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Table 1. Coding for SNPs”

SNP Location Allele code —1 Allele code 0 Allele code 1
154680 oMt G:G (val:val) A:G (met:val) A:A (met:met)
31,33 68,61 17,21
rs1800497 DRD2 T:T (lys:lys) T:C(lys:glu) C:C(glu:glu)
8,7 48,51 64,62
1907094 DARPP32 CC CT TT
10,21 54,38 56, 62

“The name of the SNP is provided along with the code assigned to each allele. The numbers indicate the counts for
the specific allele in the two tasks (Preserve, Acquire).

data were considered outliers if further than 3 SDs from the mean and
were removed before standardization. Multicollinearity of predictors
was also assessed before regression with Belsley Collinearity Diagnostics
(collintest function in MATLAB’s Econometrics Toolbox), and no predic-
tors were found to exhibit condition indexes >30, indicating acceptable
levels of collinearity. When considering retention for both tasks, unsuc-
cessful participants were removed from the regression analysis. We fur-
ther characterized the relationships between predictor variables by
combining the data for the two tasks for the WM tasks and the genetic
codes (N = 241). We analyzed relationships between the WM tasks
with correlations and between genetics and WM tasks with one-way
ANOVAs.

Exploratory mediation analysis. We performed a mediation analysis to
test whether the relationship between SWM and SR was mediated by AR.
Our hypothesis was that higher SWM enables smaller changes after cor-
rect trials (AR), and this then explains the relationship between SWM
and SR. To ensure that separate trials were used in the calculation of AR
and SR, we split the trials into two equally sized folds. The SR was then
calculated for onefold as a percentage of correct trials, and AR was cal-
culated as the median absolute change of reach angle after correct trials in
the other fold. For the Acquire task, only successful subjects were in-
cluded in the mediation analysis. We used Baron and Kenny’s three step
mediation analysis (Baron and Kenny, 1986): first regress SR on SWM,
then regress AR on SWM, and finally regress SR on both SWM and AR.
Subsequently, we performed a Sobel test to determine whether there was
a significant reduction in the relationship between SWM and SR when
including AR. The Sobel test examines whether the amount of variance in
SR explained by SWM is significantly reduced by including the mediator
(Sobel, 1986). For a significant effect to be found, SWM must be a signif-
icant predictor of AR and AR must also be a significant predictor of SR
after controlling for the effect of SWM on SR. We repeated this procedure
1000 times with the allocation of trials to each fold randomized on each
repetition. We present results in terms of the 95% CIs for the R values
for each of the regressions and the median p value of the Sobel test, along
with the associated 95% Cls. An alternative possibility to the hypothe-
sized model is that the relationship between SWM and AR is mediated by
SR. To compare the size of the mediation effect for these alternate mod-
els, we follow the Mackinnon and Dwyer (1993) procedure and normal-
ize the size of the indirect effect by dividing it by the sum of the direct and
indirect effects. This analysis allows to express the mediation effect in
terms of percentage of the total effect. We present the median of the
normalized value for the 1000 repetitions on both the hypothesized and
alternate models.

Results

Acquire task

In the Acquire task, participants had to learn to compensate for a
secretly shifting reward region to obtain successful feedback
(Figs. 2,3). Asin Holland et al. (2018), approximately one-fourth
(28.1%) of participants failed to learn to compensate for the full
extent of the rotation (Fig. 3A). The inability of a significant
proportion of participants to learn the full extent of the rotation
is also consistent with previous reports in reward-based motor
learning paradigms (Saijo and Gomi, 2010; Therrien et al., 2016,
2018; Codol et al., 2018; Cashaback et al., 2019). Successful par-
ticipants retained most of the learnt rotation (mean 80.7 * 28.0%
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SD) in the maintain block. This level of i K
retention is in accordance with that re- T |
ported previously in similar paradigms S 20
(Therrien et al., 2016; Holland et al., Z 10 !
2018). However, upon being asked to re- (E‘é :
move any strategy they had been using, g © I
their performance returned to near- o

baseline levels. Consequently, a large ex-
plicit component to retention was found
for successful participants (Fig. 3B),
whereas both successful and unsuccessful
participants manifest a small but nonzero
implicit component (tgs = 9.90, p =
7.43 X 107 '%,d = 1.061 and t.55, = 4.53,
p=7.39X107°,d = 0.776, respectively;
Figure 3C). The persistent implicit reten-
tion is a common finding of retention pe-
riods in which no visual feedback is
provided and may reflect a combination
of implicit reinforcement (Shmuelof

Figure 2.

>
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Unsuccessful, N=34 |

300 400
Trial Number

Reaching performance in the Acquire task. Gray region represents the gradually rotating rewarded region. Blue line
indicates mean reach angle for each trial. Shaded blue region represents SEM. Vertical dashed lines indicate different experiment
blocks or breaks. Average performance for the full cohort falls within the reward region and demonstrates a clear reduction in reach
angle when asked to remove strategy. N = 121.

Reach Angle (°)

et al, 2012), use-dependent plasticity
(Diedrichsen et al., 2010), perceptual bias

(Vindras et al., 1998), or perceptual reca- -10

libration (Modchalingam et al., 2019).
Furthermore, in accordance with Holland
et al. (2018), we found that participants
made larger (55, = 15.80, p = 4.32 X
10 %", d = 1.900) and more variable
changes in reach angle following unre-
warded trials (t,,0) = 14.54, p = 3.144 X
1028, d = 1.667; Fig. 3D-G). However,
in participants who would go on to fail,
the posterror adjustments were smaller
than in successful participants (t,,9, =
3.33, p = 0.001, d = 0.672; Fig. 3D).
Changes following rewarded trials were
similar between the groups (¢, ,9) = 0.71,
p = 0.48, d = 0.143; Fig. 3F,G). The re-
sults obtained in this sample (N = 121)
therefore replicate results from a previous
study (N = 30) and provide further con-
firmation that performance in this task is
fundamentally explicitly driven (Holland
et al., 2018).

To understand what genetic and WM
factors are predictive of performance in the reaching task, we
performed a lasso regression of the seven predictors (three allelic
variations, three WM, and ethnicity) onto each of several out-
come measures representative of performance: SR, implicit and
explicit retention, AR, MAD[AR], AP, and MAD[AP].

For SR, SWM, RWM, and DRD2 were selected as predictors
(median 3 = 0.31, 0.06, and 0.03, respectively; Fig. 4A), with the
strongest predictor being SWM. Figure 5 displays the effect of the
strongest predictor selected for each outcome variable and shows
that there was a positive relationship between SWM and SR (Fig.
5A). To ensure that the relationship between SWM and SR was
not due to failure at a later point in the task, SR was measured
during the initial period in which subjects who could not fully
account for the displacement are still successful; for those who
could, the full learning block was included.

Next, retention was assessed by splitting up the explicit and
implicit components, such as in Holland et al. (2018). No predic-
tor was related to the implicit component, but the explicit com-

Explicit (°)

MAD(AP) (°

Figure3.

each trial type.

)

0

100 200 300 400 500 600
Trial Number
3 40 10 p
B Z R DU P
KY - * ? o )
: gj %20 < '( o 51 &
O E o E%EL& - <
: v 5
F s G-~
g y
3 : ‘ x -I:
x N < g of
< s a e
<
0 =)

Acquire task split by success at final angle. A, Average reach angle for the successful (green) and unsuccessful (orange)
groups. Shaded regions represent SEM. Gray shaded region represents the rewarded region. Despite similar initial performance, a
clear divergence can be seen between the two groups and an explicit component to retention is only visible in the successful group,
whereas implicit retention is similar between groups. B-G, Subplots displaying derived measures, which acted as outcome
variables for the regression analysis, separated into successful and unsuccessful participants overlaid with individual data points.
Error bars indicate 95% bootstrapped Cls. AR and AP refer to changes made in reach angle after rewarded and unrewarded trials,
respectively. D, F, Bar plots represent the median absolute change. E, G, Median absolute deviation of the changes in angle after

ponent was strongly and positively associated with RWM (B =
0.27; Figs. 4B, 5B) with a weaker association between DARPP32
and explicit retention (8 = 0.03). These results suggest positive
relationships for both RWM and SWM with task performance:
greater RWM predicts a greater contribution of explicit processes
to learning, whereas greater SWM predicts a greater percentage of
correct trials.

In Holland et al. (2018), the amplitude of the changes in reach
angle participants made following unrewarded trials was found
to be predictive of task success; that is, greater AP was predictive
of an increased chance of overall task success. Thus, it could be
that RWM and SWM, which are shown to associate with perfor-
mance in this study, are themselves predictors of changes in reach
angle. Conformingly, the regression results demonstrated that a
large AR was inversely related to SWM (3 = —0.11; Figs. 4F, 5D),
as was MAD[AR] (B = —0.17; Figs. 4G, 5E). The results indicate
that greater SWM was predictive of smaller and less variable
changes in reach angle after successful trials, suggesting high
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Figure 4.

Lasso regression results for the Acquire task. A-G, Each row represents the results from one outcome variable. Left column represents the MSE as a function of changing the shrinkage

parameter A, with larger values of A representing greater penalization and sparser models. A minimum in the MSE within its defined boundaries indicates the suitability of that choice of A (indicated
with a vertical line). Given the presence of a minimum, the values of the 3 for each predictor are taken. We performed 1000 repetitions of the lasso regression for each outcome variable. Middle, Box
plots represent the distribution of the coefficient estimates. Rightmost column represents the percentage of times that the individual predictors were assigned nonzero coefficients. We used a
threshold of 80% (indicated with a dashed vertical line) to signify that a particular predictor was robustly selected, and these variables are highlighted in green. Median absolute deviation of change

in reach angle after rewarded (MAD[AR]) and unrewarded (MAD[AP]) trials.

SWM enables the maintenance of rewarding reach angles. It was
also found that changes in reach angle following unrewarded
trials (AP) were negatively associated with VWM (B = —0.13,
Figs. 4D, 5C). This result was unexpected as it suggests that
greater WMC predicts smaller changes following unrewarded tri-
als, whereas previous results suggest a positive relationship be-
tween the amplitude of these changes and overall task success.
Although the difference may be due to the domain of WM under
consideration, it is unclear as to the reason for this relationship.
Another important aspect of the analysis of trial-by-trial changes
to control for is that the numbers of trials analyzed and their

phase in the experiment differs between successful and unsuc-
cessful subjects. Therefore, we repeated the Lasso regression
while only including successful subjects. The predictors that were
selected were identical to those selected when using the full par-
ticipant pool.

Overall, WM (in particular RWM and SWM) successfully pre-
dicted various aspects of performance in the Acquire task, while
genetic predictors generally failed to do so. Specifically, greater
SWM predicted smaller and less variable changes after correct
trials. This suggests that SWM underlies one’s capacity to pre-
serve and consistently express an acquired reach direction to ob-
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Added variable plots for selected predictors in the Acquire task. A—E, Each plot represents the relationship between the strongest predictor selected by the lasso regression (x axis) and

the corresponding outcome variable ( axis). Added variable plots represent the residuals of regressing the response variable with all remaining independent variables, and the residuals of the
regression of the selected predictor to the remaining predictors. The resulting relationship corresponds to the effect of the selected predictor on the outcome measure after controlling for the
remaining predictors. MAD(AR), Median absolute deviation of change in reach angle after rewarded trials.

tain reward. Furthermore, SWM also
directly predicted SR. In addition, greater

20
RWM was a strong predictor of explicit
control. The inverse relationship between
VWM and the magnitude of changes after
unrewarded trials was unexpected. How-
ever, one possible explanation is that par-

Reach Angle (°)
>

| |
| |

| |

| |

i |

| |

ticipants with poorer WMC make larger
errors, which require larger corrections.

Preserve task

In this task, we addressed how well partic-
ipants can maintain a previously learnt
adaptation after transitioning to binary
feedback. As participants are unable to
compensate for a large abrupt displace-
ment of a hidden reward region (Manley et al., 2014; van der
Kooij and Overvliet, 2016), participants first adapted to an
abruptly introduced 20° clockwise rotation with full vision of the
cursor available. Subsequently, visual feedback of the cursor po-
sition was replaced with binary feedback; participants were re-
warded if they continued reaching toward the same angle that
resulted in the cursor hitting the target during the adaptation
phase. Overall, participants adapted to the visuomotor rotation
successfully (Figs. 6, 7A-C) before transitioning to the binary
feedback-based asymptote blocks. However, from the start of the
asymptote blocks onward, participants exhibited very poor per-
formance, expressing an average 45.0 * 24.2% (SD) SR when
considering all 200 asymptote trials (Figs. 6, 7A,D,E). We have
previously shown, in Codol et al. (2018), that this drop in perfor-
mance (Shmuelof et al., 2012) represents exploratory behavior
that arises due to a lack of transfer of the cerebellar memory

Figure 6.

100 150 200 250 300 350 400 450 500
Trial Number

Reaching performance in the Preserve task. Gray shaded area represents the rewarded region. Thick black line
indicates the perturbation. Vertical dashed lines indicate block limits. Blue line indicates mean reach angle for every trial. Blue
shaded areas represent SEM. After successfully adapting to the visuomotor rotation, performance deteriorates at the onset of
binary feedback; subsequently, SR increases toward the end of the asymptote blocks. Following the removal of all feedback, and
the instruction to remove any strategy, a small amount of implicit retention remains. N = 120.

between the two contexts. Separating successful and unsuccessful
participants (40% SR cutoff; Fig. 7A) revealed that successful
participants expressed behavior greatly similar to that observed
in Codol et al. (2018), in which unsuccessful participants were
excluded, using the same cutoff (40% SR). The “spiking” behav-
ior observed in reach angles during the asymptote blocks (Fig.
7A) is due to the presence of the “refresher” trials, with the large
positive changes in reach angle corresponding to trials immedi-
ately following the refresher trials. This pattern of behavior is
particularly pronounced in the unsuccessful participants. Finally,
participants demonstrated at least a residual level of retention,
even after being instructed to remove any strategy they had used
(tigo) = 7.268,p = 3.345 X 10 ~'%, d = 0.869; Fig. 7A,F). There-
fore, the results obtained in this sample (N = 120) replicate re-
sults from a previous study (Codol et al., 2018) (N = 20, binary
feedback-Remove group) and provides further confirmation that
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performance in this task is fundamentally
explicitly driven. It should also be noted
that the successful group displayed higher
implicit retention than the unsuccessful
participants. As with the Acquire task,
successful participants displayed larger
changes in angle after unrewarded trials
than their unsuccessful counterparts (,,,) =
3.847,p = 1.952 X 10 7% d = 0.717; Fig.
7H ). However, in contrast to the Acquire
task, successful participants also displayed
smaller changes in angle after rewarded
trials (5, = —7.534,p = 1.218 X 10 '/,
d = 1.421; Fig. 7G).

As in the Acquire task, we examined
whether performance in any of the WM
tasks or genetic profile could predict par-
ticipants’ behavior in the reaching task.
We performed separate lasso regressions
for the following outcome variables: base-
line reach direction as a control variable,
learning rate in the adaptation block, early
and late SR in the asymptote blocks (first
30 and last 170 trials) (Codol et al., 2018),
retention in the no-feedback blocks, and
AR and AP during the asymptote blocks.
The most striking result was that both
early and late SR could be reliably pre-
dicted by RWM (early: B = 0.17, late: B =
0.12; Figs. 8C,D, 9A,B), with greater
RWM associated with increased SRs. An
additional positive relationship was found
between SWM and SR but only during the
later period (8 = 0.02; Fig. 8C).

Genetic profile did not predict any as-
pect of performance. In contrast, greater
SWM successfully predicted reduced AR
(B = —0.15; Figs. 8G, 9C) similarly to the
Acquire task. Additionally, there was a
weaker relationship between RWM and
AR (B = —0.06; Fig. 8G), which was ab-
sent in the Acquire task. Despite the pres-
ence of a local minimum in the MSE for
the regression involving retention, no in-
dividual predictor was consistently se-
lected in >80% of repetitions (Fig. 8E).

Overall, the regression results across
both tasks exhibited a similar pattern,
with greater RWM predicting improved
performance on the reaching task and
greater SWM predicting smaller changes
in reach angle after rewarded trials. The
weak relationships found between genetic
variables and performance measures in
the Acquire task (DRD2-SR and DARPP32-
Explicit retention) were not replicated in
the Preserve task, questioning the reliabil-
ity of these relationships.

Furthermore, we analyzed the data us-
ing group lasso (Yuan and Lin, 2006;
Boyd, 2010) regression to check for the
possibility that our analysis was insensi-
tive to categorical predictors (the genetic
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variables). The group lasso is an extension
to lasso regression in which predictor
variables can be assigned to groups. Al-
though each member of a group can be
assigned a different 3, the group lasso ap-
plies the regularization penalty to all
members of the group, leading to the re-
moval of all members of the group from
the model at the same value of . We used
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reference dummy variable coding for each
genetic variable and treated the dummy
variables representing each SNP as a
group for the purposes of the group lasso;
this ensures that the dummy variables .
representing each genetic factor are re- 2
moved from the regression at the same
time. The results of the group lasso anal-
ysis replicate those of the standard lasso;
furthermore, no genetic predictors were
found for any outcome variable in either
task. The results obtained for both tasks
via the lasso regression methods are

(@)

residual(AR,e)

residual(RWM,e)

similar to those obtained using a step-
wise regression procedure. All data and
code are available online, including the
procedures, results, and significance
tests of the lasso and stepwise regression
analysis.

Relationships between predictors

In the full sample (n = 241), we assessed the relationship between
the predictor variables. Despite the collinearity of the variables
being within recommended values for use in regression (see Ma-
terials and Methods), we did find significant relationships be-
tween all three WM tasks. VWM and SWM were the most closely
correlated (r = 0.393,p = 3.153 X 10 19 followed by SWM and
RWM (r = 0.384, p = 7.491 X 10~ '%), and finally RWM and
VWM (r = 0.189, p = 0.003). When examining the relation-
ships between genetics and WM tasks, only one relationship
was significant (DRD2 and SWM, F, 54,y = 3.927, p = 0.021).
However, this relationship did not survive correction for mul-
tiple comparisons.

Partial correlation analysis

To understand whether the RWM and SWM measures have sep-
arable effects on the outcome measures considered here, we per-
formed a partial correlation analysis examining the relationships
between RWM, SWM, and SR in both tasks. After controlling for
the effect of RWM, SWM remained significantly correlated with
success in both tasks (Preserve: r = 0.343, p = 0.005; Acquire: r =
0.488, p = 6.823 X 10 ~°). However, the partial correlation be-
tween RWM and SR was not significant for either task, indicating
that, even in the Preserve task, SWM plays a dominant role in
determining SR.

Exploratory analysis

As a relationship exists between SWM and AR in both the Ac-
quire and Preserve paradigms, we ran exploratory regressions to
assess the relationship between AR and SR across both tasks.
Since AR and SR are conceptually strongly related variables, and
measuring on the same dataset would render them nonindepen-
dent, we split each individual’s reaching data into two sections
and assessed whether AR or AP in the first section could reliably

0 1 2
residual(SWM,e)

Figure 9.  Added variable plots for selected predictors in the Preserve task. A-C, The effect of the considered predictor when
accounting for the effect of all other predictors. Results are displayed for the strongest selected predictor for each outcome
measure. SRe, Early SR; SRI, late SR.

predict SR in the second (for details, see Materials and Methods).
Although we found no predictors of AP in our primary analysis,
results here in combination with previous work (Holland et al.,
2018) have demonstrated a link between AP and task success,
with a greater AP indicative of greater success. Therefore, we also
performed the same analysis for AP.

In the Acquire task, AR and AP in the first section of learning
trials predicted SR in the final 20 trials, although AP appeared as
the strongest predictor (AR: B = —0.274, p = 0.015; AP: B =
0.581, p = 3.89 X 106 Fig. 10A, B, yellow; Table 2). Similarly,
for the Preserve task, AR and AP in the first half of asymptote
trials predicted SR in the second half (AR: B = —0.750, p =
1.07 X 10 '3 AP: B = 0.229, p = 0.007; Fig. 10A, B, pink; Table
2). In both tasks, the directions of these relationships were oppo-
site; greater SR was predicted by smaller AR and greater AP. In
summary, we found that, for both tasks, the magnitude of
changes in behavior in response to rewarded and unrewarded
trials early in learning was strongly predictive of future task suc-
cess across both the Acquire and Preserve tasks.

Mediation analysis

Finally, to test whether the effect observed between SWM and SR
was explained by an indirect effect through AR, we performed an
exploratory mediation analysis on both tasks. For both the Ac-
quire and Preserve tasks, the results indicate a significant propor-
tion (median p = 7.10 X 10 ~* and p = 0.04, respectively) of the
relationship between SWM and SR can be explained by a media-
tion from SWM via AR to SR (Fig. 11). However, in the case of the
Acquire task (Fig. 11A), a significant relationship between SWM
and SR also remained, indicating that not all of the effect of SWM
on SR could be explained by the indirect pathway. Of note, in the
Preserve task (Fig. 11B), the SWM-AR relationship was weaker
and was not significant on every repetition, occasionally leading



Holland, Codol et al. ® Mechanisms of Reward-Based Motor Learning

A AR early (°)
0 2 4 6 8

Figure 10.

J. Neurosci., November 20, 2019 - 39(47):9383-9396 * 9393

AP early (°)
6 8 10 12
T 100
foYe) [}
6o o
8o ]
y o . 180
§ c%ék’ Q..
07 o
o% ﬂg}gﬁo o ‘ &
o 2 5 © ® {60 s
© QPO g @ serasreaenes
‘ o° Q o o 140
Jex) . n
(©0] o (e} o
o
°o & 120
l°)
o ?
—Q0-——@- 0

Slice plots showing regression results for prediction of late SR by changes in reach angle following rewarded (4) and unrewarded (B) trials during the early learning period. The central

axis of each panel displays the individual data from the Acquire (yellow) and Preserve (pink) task. A histogram displaying the distribution of the data in each dimension is presented on the
corresponding axis. Solid lines indicate the prediction of the regression model when the other predictor is held at its mean value.

Table 2. Regression results for split data for both the Acquire and Preserve tasks”

AR AP Model
Acquire
B —0.274 0.581 Farszy = 119
SE 0.111 0.120 p=209%X10"°
p 0.015 3.89 X 10 ¢
Preserve
B —0.750 0.229 Farag = 353
SE 0.093 0.084 p=128x10""
p 1.07 X 1077 0.007

“Ordinary least squares linear regressions were performed with both AR and AP included as predictors. The regres-
sion coefficient, SE, and p value for each predictor are reported along with the significance of the comparison
between the model and an intercept only model. In both tasks, there is an opposing relationship between AR and
AP and success rate, with smaller changes after rewarded trials and larger changes after unrewarded trials predic-
tive of success.

to an insignificant mediation effect, despite the median p value
indicating an effect when considering all repetitions. We also
examined an alternative possibility to the hypothesized model in
which a relationship between SWM and AR was mediated by SR.
We found that 31.20% of the total effect was mediated in the
Acquire task using the hypothesized model, in contrast to only
0.17% in the alternative model. Similarly, in the Preserve task, the
hypothesized model displayed a substantially larger mediation
effect (44.77%) than the alternative model (5.02%). These results
support the application of the hypothesized model.

Discussion

In this study, we sought to identify whether genetic background
or specific domains of WMC could explain the variability ob-
served in performance levels during reward-based motor learn-
ing tasks. We found that RWM and SWM predicted different
aspects of the Acquire and Preserve tasks, whereas VWM only
related to one performance measure (AP), but not consistently
across tasks. Specifically, RWM predicted the explicit component
of retention in the Acquire task and SR in the Preserve task,
whereas SWM predicted SR in the Acquire task and the late pe-
riod of the Preserve task. Furthermore, SWM negatively pre-
dicted AR in both tasks. Conversely, allelic variations of the three
dopamine-related genes (DRD2, COMT, and DARPP32) did not
consistently predict any behavioral variables across both tasks.
This suggests that SWM predicts a participant’s capacity to repro-
duce a rewarded motor action, whereas RWM predicts a partici-
pant’s ability to express an explicit strategy when making large

behavioral adjustments. Therefore, we conclude that WMC plays
a pivotal role in determining individual ability in reward-based
motor learning.

Recently, Wong et al. (2019) described a positive relationship
between SWM and the development of explicit strategies in visuo-
motor adaptation, complementing previous reports (Anguera et al.,
2012; Christou et al., 2016; Vandevoorde and Orban de Xivry,
2019). However, in contrast to the current findings, the previous
experiments used relatively small sample sizes, which may render
correlations unreliable. The large group sizes used here, and the
confirmation of relationships across two tasks, provides strong
evidence that these relationships are robust, replicable, and ex-
tend from visuomotor adaptation to reward-based motor learn-
ing. An interesting dichotomy was the reliance on SWM and
RWM for the Acquire and Preserve task, respectively. Whereas
the Preserve task required the maintenance of a large, abrupt
behavioral change, the Acquire task required the gradual adjust-
ment of behavior considering the outcomes of recent trials.
Therefore, RWM may underscore one’s capacity to express a
large correction consistently over trials with binary feedback,
whereas SWM reflects one’s capacity to maintain a memory of
previously rewarded actions and adjust behavior accordingly. Ac-
cordingly, McDougle and Taylor (2019) demonstrated that a
mental rotation process is used in countering a visuomotor rota-
tion, and Sidarta et al. (2018) reported that higher SWM is asso-
ciated with reduced movement variability in a reward-based
motor learning task. Here, the magnitude of AR was negatively
related to SWM, but not RWM, in both tasks, suggesting that
high SWM enables the maintenance of rewarding actions. Addi-
tionally, explicit retention, an element of the Acquire task requir-
ing a large, sudden change in reach direction, was predicted by
RWM rather than SWM. Notably, RWM and SWM were often
selected as predictors simultaneously. The overlapping, but dis-
tinct, pattern of relationships between RWM, SWM, and out-
come measures considered here supports the view that they share
substrates but have different patterns of dependency on executive
functions (Miyake et al., 2001).

A notable feature of the Preserve task is the “spiking” behavior
observed immediately following “refresher” trials, suggesting a
central role of refresher trials in binary feedback-based perfor-
mance when included (Shmuelof et al., 2012; Codol et al., 2018).
The transient nature of this decrease in error demonstrates this is
insufficient to promote generalization to binary feedback trials, at
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R2=0.19-5.62%

SR
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R?=32.20-50.83%

Indirect effect [X->M->Y]: R?=1.24-4.51%
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Mediation analysis for both the Acquire (4) and Preserve (B) tasks. The numbers associated with each arrow display the 95% Cls for each of the relationships (R and p values) across

the 1000 repetitions. Below the figure, the results of the Sobel test are displayed, indicating the amount of variance explained by the indirect pathway and the 95% Cls and median p value.

least in unsuccessful participants. It remains an open question
whether superior performance of successful participants was
partly due to a capacity to generalize information from “re-
fresher” trials. McDougle and Taylor (2019) suggest that two
separate strategies are used in visuomotor adaptation: response-
caching and mental rotation. The balance between the two strat-
egies is a function of task demands. The relationships between
RWM and SWM to SR in the Preserve and Acquire tasks, respec-
tively, may reflect a different balance of the use of these strategies.
Visual feedback in “refresher” trials in the Preserve task may
engage mental rotation processes, whereas the slow updating of
behavior in the Acquire task engages the response-caching mem-
ory system. This would imply that response-caching is associated
with SWM.

Surprisingly, although AP was a strong predictor of success in
both tasks, it was not consistently predicted by any variable across
both tasks. The lack of a consistent predictor of AP was unex-
pected given the importance of errors for the induction of struc-
tural learning in reinforcement learning (Sutton and Barto, 1998;
Daw et al.,, 2011; Manley et al., 2014) and reward-based motor
learning (Maxwell et al., 2001; Sidarta et al., 2018).

If RWM is important for explicit control and the main ele-
ment predicting success in the Preserve task, it is worth consid-
ering whether gradual designs (as in the Acquire task) are more
suitable to engage implicit reinforcement learning, at least ini-
tially. However, the Acquire task still bears a strong explicit com-
ponent (Holland et al., 2018). How can these two views be
reconciled? In reward-based motor learning tasks, it is observed
that participants begin to reflect upon task structure and develop
strategies upon encountering negative outcomes (Maxwell et al.,
2001; Leow et al., 2016; Loonis et al., 2017), which occurs nearly
immediately in the Preserve task after the introduction of binary
feedback, due to a lack of generalization of cerebellar memory
(Codol et al., 2018). In contrast, in the Acquire task, participants
experience an early learning phase with mainly rewarding out-
comes, possibly suppressing development of explicit control and
allowing for this early window of implicit reward-based learning.
Other studies have demonstrated that minor adjustments in
reach direction under reward-based feedback can occur, al-
though none has assessed their explicitness directly in the very
early stages (Izawa and Shadmehr, 2011; Pekny et al., 2015; Ther-

rien et al., 2016). Notably, Izawa and Shadmehr (2011) observed
that, after 8° shifts of a similarly sized reward region, participants
indeed noticed the perturbation, but awareness was not assessed
for smaller shifts.

In Holland et al. (2018), the addition of an RWM-like dual
task was very effective in preventing explicit control, leading to
participants invariably failing at the reaching task. Therefore, it
may seem surprising that RWM does not predict SR in the Ac-
quire task. A possible explanation is that RWM and SWM share
the same memory buffer (Cohen et al., 1996; Jordan et al., 2001;
Logie et al., 2005; Suchan et al., 2006; Anguera et al., 2010). Sim-
ilarly, in force-field adaptation, the early component of adapta-
tion, considered as bearing a strong explicit element, is selectively
disrupted with a VWM dual task (Keisler and Shadmehr, 2010).
However, we found no consistent relationship with VWM across
our reward-based motor tasks. It may be possible that reward-
based motor performance relies more on spatial instances of WM
as opposed to tasks, such as force-field adaptation.

The absence of DA-related genetic relationships with behavior
is a surprising result as a substantial body of literature points to a
relationship between dopamine and performance in reward-
based tasks, including those with motor components (Frank et
al., 2007, 2009; I1zawa and Shadmehr, 2011; Nakahara and Hiko-
saka, 2012; Deserno et al., 2015; Pekny et al., 2015; Doll et al.,
2016; Therrien et al., 2016; Gershman and Schoenbaum, 2017).
There is a growing appreciation of the links between decision-
making and motor learning (Haith and Krakauer, 2013; Chen et
al., 2017, 2018). However, the results presented here suggest that
genetic predictors of exploration and exploitation in decision-
making tasks are not also predictive of similar behaviors in
reward-based motor learning.

Our sample sizes were defined a priorifor 90% power based on
previous work (see preregistrations) (Frank et al., 2009; Doll et
al., 2016), and are unlikely to be underpowered. Another possi-
bility is that we used the wrong variables to assess behavior. How-
ever, given the informative and coherent relationships between
WM and motor learning, it could be that the SNPs we selected do
not meaningfully relate to performance in reward-based motor
tasks compared with WM. A similar claim was made in the
decision-making literature (Collins and Frank, 2012). In line
with this, a recent study showed that DA pharmacological ma-
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nipulation did not alter reward effects in a visuomotor adaptation
task (Quattrocchi et al., 2018). However, previous work has
shown that Parkinson’s disease patients show impaired reward-
based motor performance (Pekny et al., 2015). It is possible that
genetic variations may simply not impact reward-based motor
learning significantly, especially compared with the wide deple-
tion of dopaminergic neurons in Parkinson’s disease. It is also
important to note that, while we refer to both of our tasks as reward-
based motor learning, they are both in essence visuomotor rotation
paradigms. In the future, it is important to investigate whether these
findings extend to more complex reward-based motor learning
paradigms.

In conclusion, despite using two distinct tasks and an inde-
pendent participant pool on different devices, we find strikingly
similar results in reward-based motor learning. Whereas SWM
strongly predicted a participant’s capacity to reproduce success-
ful motor actions, RWM predicted a participant’s ability to ex-
press an explicit strategy when required to make large behavioral
adjustments. Surprisingly, no dopamine-related genotypes pre-
dicted performance. Therefore, WMC plays a pivotal role in de-
termining individual ability in reward-based motor learning.
This could have important implications when using reward-
based feedback in applied settings as only a subset of the popula-
tion may benefit.
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